The physical security market continues to experience growth as users look to capitalize on the promises of emerging technologies and because of this, 2017 proved to be a great year for Oncam.

In fact, this year was the best year in Oncam's history in terms of sales, as 360-degree fisheye cameras have gone from being a “specialty” camera used only in certain applications to a primary device for enabling total situational awareness. Today, many of our customers leverage 360-degree cameras exclusively to provide extensive coverage inside a facility or in a large outdoor area, with traditional narrow field-of-view cameras used only at “choke” points.

Increase In Cybersecurity Threats And Breaches

At the end of 2016, we predicted a major trend this year would be an increase in cybersecurity concerns for users of physical security systems, and we were right. An increase in cybersecurity threats and breaches have put organizations on watch.

Based on this and the adoption of more IT-centric infrastructure and protocols, there is significant collaboration between IT and physical security, and true “convergence” is finally starting to happen. The adoption of video analytics also continued to increase this year, as most video surveillance projects involved the use of some form of analytics and data analysis.

Demand For Safeguards

As we move into 2018, the trends of 2017 will roll over, and cybersecurity will continue to be a major issue. Suppliers of hardware and software will put an even greater emphasis being cyber secure and end users will increasingly demand safeguards.

Additionally, the deployment and use of advanced analytics based on newer artificial intelligence-based technologies will continue to increase. It will be the technology providers that find ways to allow users to capture additional value from the information collected by security systems that will accelerate growth.

Oncam made significant investments in new products that leverage analytics and cloud technologies. In 2018, we will continue to invest in the development of new products, with a focus on solutions for particular applications across industry segments. Beyond our technology advancements, we've invested significantly in boosting our sales force in the Americas and adding industry experts to ensure sustained customer and partner success with our solutions. From our vantage point, Oncam is well positioned to capitalize on opportunities for growth in the coming year.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

Jumbi Edulbehram Regional President, Americas, Oncam

Jumbi is currently the President, Americas for Oncam, a maker of 360 degrees cameras and software. He is responsible for all sales, marketing and business development activities in the Americas. Prior to Oncam, Jumbi served as the Director of Business Development for the security division of Samsung Techwin, where he was responsible for managing strategic partnerships with technology partners, consultants/A&Es, and large national integrators. His team was also responsible for developing new business in industry segments such as retail, government and transportation.

In case you missed it

How Thermal Technologies Improve Facility Security And Workforce Safety
How Thermal Technologies Improve Facility Security And Workforce Safety

Blind spots in surveillance coverage, incompatible video and access control systems, lack of adequate perimeter measures—these are common issues that facility directors must address with their security teams. At the end of the day, facility executives need technology that accomplish more with less—that expand situational awareness, overall system functionality, and real-time response capabilities while generating cost-savings. By leveraging technology like thermal imaging, this is possible. Security directors who want to improve facility management—specifically 24/7 monitoring for heightened security and elevated skin temperature frontline screening for entry control—should consider incorporating thermal cameras into their next security upgrade or new installation project.  Levelling up your security with thermal By using thermal security cameras, facility directors can better protect their property and tenants from external threats. Backed by decades of successful deployment in the government and defense sector for reconnaissance, thermal imaging is a trusted technology. New innovations have expanded the use cases for thermal cameras and made them widely available to commercial and industrial facilities. Today, corporate offices, manufacturing plants and healthcare campuses all use thermal cameras as a core component of their security strategy. All use thermal cameras as a core component of their security strategy Thermal security cameras perform in adverse conditions where standard surveillance cameras cannot. Visual cameras require a light source, and thus, additional infrastructure, to produce an image. If there’s no light, there’s no video. Because thermal cameras measure infrared radiation, or heat, they do not need illumination to produce imagery. In fact, thermal cameras can see in total darkness as well as in rain, smoke, and light fog. They truly enable 24/7 surveillance. Enhancing video analytics Further, thermal cameras yield high-contrast imagery, which not only enhances video analytics performance, but also situational awareness. For example, a security operator viewing a thermal camera feed can easily spot a trespasser attempting to camouflage in the foliage at night by alerting the operator of body heat on premise. Thermal cameras also enable alarm validation. While motion sensors, laser detectors and fiber optic cables need another technology to visually verify the alert, thermal cameras already provide this function. With onboard analytics, thermal cameras detect objects, classify whether it’s a human, animal or vehicle, and provide video clips for remote operators to assess the alert. Consequently, thermal cameras minimise unnecessary dispatch of guards or police for false positives, saving valuable time, money and resource for facilities. In the event of a true alarm, thermal cameras enable superior suspect tracking. Upon receiving an intrusion alert, a long-range pan-tilt thermal camera can widely monitor the area and scan the property. The camera can then follow the movements of an intruder, and if equipped with both thermal and optical sensors, provide both thermal and color video of the person. With this data, a security officer can ascertain the threat level and determine whether the person is an employee who forgot their ID or an unauthorised person trespassing on private property. It is important to note that thermal cameras cannot detect a specific individual or their personal information, rather they classify whether the object is a human and then further analysis is required through of the use of visual cameras for identification.  For these reasons, facility directors, especially those managing large campuses or properties, should consider deploying thermal cameras to maximize their intrusion detection capabilities for stronger overall security. Thermal cameras maximize intrusion detection capabilities Streamlining entry control with temperature screening Facility executives can also improve their access and entry control security procedures by using radiometric thermal cameras for temperature screening. COVID-19, classified as a global pandemic in March 2020, has permanently changed how facility directors build security and environmental, health and safety (EHS) plans. Now, facility directors are prioritising protocols and technologies that minimise both the risk of exposure as well as the spread of infectious diseases among employees, visitors and contractors. Temperature checks have become one of the most widely adopted as a key component of frontline screening practices across facilities. In fact, General Motors plants and the Pentagon Visiting Center are notable examples of critical facilities deploying radiometric thermal cameras for skin temperature screening.  Radiometric thermal cameras for skin temperature screenings allow for a non-contact, frontline diagnostic tool that enables high throughput. These thermal cameras specifically measure skin surface temperature at the inner corner of the eye, the region medially adjacent to the inner canthus, which is known to be the best measurement spot. The most reliable thermal cameras yield accuracies of ±0.3°C (0.5°F) over a temperature measurement range of 15°C to 45°C (59°F to 113°F).  Available in a handheld, tripod-mounted or fixed-mount form factor, elevated skin temperature thermal cameras are deployed inside entryways, immediately screening people as they walk into the facility. These cameras scan a person up to one to two meters (or three to six feet) away. Premium thermal cameras can scan individuals in two seconds or less. Premium thermal cameras can scan individuals in two seconds or less Thermal cameras are intended for use as an adjunct to clinical procedures in the screening of skin surface temperature. Upon detection of an elevated skin temperature, a person must then undergo a secondary screening where a medical device can determine whether the person has an actual fever or should partake in virus specific testing. By implementing these screening procedures, facility directors ensure a faster, non-invasive method to quickly detect possible signs of infection before an individual enters a populous area. This minimizes the risk of communal spread of viruses among employees in the workplace, which ultimately increases workforce health, safety and peace of mind. Today, a total security solution designed to detect both physical threats as well as environmental and health hazards is one that includes thermal cameras for elevated skin temperature screening. Facility managers can strengthen their risk management plans by proactively expanding their security systems to include these solutions. Many physical security solutions are already in place at key entry points as well as additional checkpoints, such as indoor surveillance cameras, visitor management and access control. Implementing screening stations with specific radiometric thermal cameras is a logical integration at these locations. Choosing the right solution for your facility While thermal cameras for perimeter protection and elevated skin temperature screening are valuable components to the overall security system, facility directors need to know that not all thermal is created equal. Thermal cameras need to be carefully researched and evaluated before deployment. Here are a few best practices for choosing the right thermal camera for your facility and application. Define your application: A thermal camera made for long-range perimeter monitoring functions differently than a thermal camera built for elevated skin temperature screening. Make sure to choose a camera designed for your specific use case. Know the distinguishing characteristics: Be aware of which technological features separate high-performing cameras from low-end options. For perimeter thermal cameras, resolution, detection range and integration capabilities matter. For elevated skin temperature screening cameras, resolution, sensitivity, accuracy and stability are critical. Check for certifications: Select a thermal camera with proven interoperability. Consider one that is ONVIF-compliant to ensure integration with the overall security system and chosen video management software. Additionally, for elevated skin temperature cameras, consider one that has a 510(k) filing (K033967) with the U.S. Federal and Drug Administration as well as one that supports other screening standards such as ISO/TR 13154:2017 and IEC 80601-2-59:2017. Work with experienced partners: Work with a system integrator who is knowledgeable in thermal. Choose thermal cameras from manufacturers with a solid track record of success for both security and elevated skin temperature screening deployments. Leverage guidebooks, site planning tools and online trainings that these experienced manufacturers have to offer to maximize performance.

Pandemic-proofing your Proptech Stack to Address Top Safety Concerns
Pandemic-proofing your Proptech Stack to Address Top Safety Concerns

A recent survey compared how employees, tenants, property owners and managers, and developers feel about returning to the workplace, and what would make them feel safer. Among the responses from employees and tenants, 63% don’t feel comfortable returning to work, and cited their own health and safety, as well as the safety of their loved ones, as the main cause for concern. However, 73% of business owners said they plan on reopening as soon as possible, within 2-4 weeks. How can we fix the disconnect, and ensure that property owners are creating safer, healthier workspaces for returning tenants?  With the right tools and strategies in place, businesses can return to work with confidence. As it turns out, decision makers are prepared to budget for safety precautions as well; whether it’s providing PPE for employees, or upgrading building systems, 51% of owners are increasing their security and safety spend in response to the pandemic. Innovative technology is helping businesses find ways to accommodate new health guidelines, as well as give tenants peace of mind as they return to the workplace.  Tenant and employee concerns 79% of people saying they’d be more willing to return to work with reduced occupancy In addressing top tenant and employee concerns, many businesses are pivoting to staggered work schedules. This is a good starting point for accommodating the CDC workplace guidelines for social distancing, as it helps minimize the number of people in the building. In fact, social distancing was the top-requested safety update requested by employees and tenants, with 79% of people saying they’d be more willing to return to work with reduced occupancy.  However, with 80% of businesses maintaining or decreasing their current building size, minimizing the number of people at work can be challenging, especially if you’re managing your facility remotely. Occupancy management tools, such as density counters, people sensors, and presence reporting data, can help administrators track who is at the building and when. Plus, with more data at your disposal, you can make informed decisions about space utilization throughout the building, whether to reopen amenities like gyms and cafeterias, and adjust work schedules to accommodate capacity thresholds. To further streamline the process, you can enforce capacity thresholds by connecting occupancy tools to your access control system. Associating work schedules with access credentials ensures that only those scheduled for the day will be able to enter the space. Accessing the workplace Which brings us to the next piece of the return-to-work puzzle: how people are accessing the workplace. “The reality is that people don’t want to touch things anymore; it’s just too stressful,” says Openpath President James Segil, “Removing the communal touch points is key to making people feel safer, which is why you’ll see so many tech companies pivoting to touchless capabilities.” And yet, only 25% of decision makers have implemented touchless solutions. Mobile credentials were already growing in popularity for their convenience and ease of use prior to the pandemic. In fact, 62% of survey respondents would prefer to use their phone to enter the workplace. Now, touchless access control options can also eliminate the need to touch a common reader or door handle. Plus, with a cloud-based access control solution, all those mobile credentials are managed remotely, which helps accommodate a remote workforce and eliminates the need to meet in person to issue a badge. When even opening the front door induces anxiety, touchless access makes it one less thing to worry about.  Healthcare questionnaires In addition to limiting who has access to the building, many businesses are now requiring employees and visitors to complete health questionnaires prior to coming into the workplace. Take the burden off your administrative staff by using tenant and visitor platforms like Envoy Protect, which offer digital access requests, check-in, and amenity reservations. Using a mobile platform to create, distribute, and manage health questionnaires is a smart way to streamline your operations, plus it gives you more visibility into who is in your building and when. 45% of commercial landlords and business owners admit security is one of the biggest challenges During the pandemic, 45% of commercial landlords and business owners admit security is one of the biggest challenges they’re facing. Approach technology updates with a smart strategy to maximize the safety and security benefits: start with the most impactful areas first, such as the front door. A mobile access control solution like Openpath that offers built-in occupancy tracking capabilities can help automate and enforce social distancing measures while still ensuring the security of your space. As a best practice, open systems allow for seamless integrations to strengthen your security. For example, integrating Cisco Meraki’s video surveillance platform with access control enables remote security management by associating real-time footage with access events.  Prioritising safety and security is key to addressing the concerns of returning tenants and employees as workplaces reopen. Because business owners are faced with tough decisions on which updates will prove to be sound investments, it’s important to consider technology that does more than solve immediate problems. Future-proof systems enable safer reopening now, and are also primed to meet the challenges of tomorrow. Integrated proptech tools are allowing businesses to make smarter decisions and create safer, healthier workspaces for the post-pandemic world.

ISC West Virtual Session Highlights Promise of OSDP to Replace Wiegand
ISC West Virtual Session Highlights Promise of OSDP to Replace Wiegand

John Wiegand died in 1986, but the communications protocol that bears his name is still alive and well, connecting access control readers to controllers using two wires – one to transmit “zeros” and the other to transmit “ones.” The Wiegand protocol persists despite its limitations, including one-way communication, lack of encryption, and inability to manage the readers in a system centrally. In a Wiegand system, a controller provides no acknowledgement that data has been received. Systems that still use the Wiegand protocol are performing below accepted industry standards and are vulnerable to over-the-counter exploits. A session at ISC West’s Virtual Event highlighted a replacement technology that solves those problems and expands the security, flexibility and functionality of systems. The technology is called OSDP (Open Supervised Device Protocol), which is now a standard managed by the Security Industry Association (SIA) and designated as an international standard by the International Electrotechnical Commission (IEC 60839-11-5).   Aligning three components OSDP requires alignment of three critical components – the access control system, readers and controllers. The access control system, readers and controllers OSDP is an RS-485 protocol used to pass card format data from the reader to the controller. Like the Wiegand protocol, it uses two wires, but in this case one wire transmits data and the other receives data. Installation is simplified because no system needs more than four wires – two for OSDP communication and two more for power. In contrast, using Wiegand, additional wires are needed to add other capabilities – up to 8 or more wires in all. OSDP cable runs can extend up to 4,000 ft (compared to 500 feet for Wiegand). Resolving problems Therefore, unlike Wiegand, OSDP sends information in both directions and provides “supervision” of the readers. If there is a problem with a reader, such as a reader communication error or disconnect, that notification is sent back to the access control management system. OSDP also supports encryption for greater security, in effect enabling end-to-end encryption for a host system, controller, I/O modules, readers and credentials. That notification is sent back to the access control management system OSDP also provides additional capabilities, such as control of a reader’s LED and buzzer as well as sending text notifications and messages to compatible displays. Integrators and/or end users can also push configuration and firmware updates to readers all at once. Because OSDP is “open,” there are more third-party integrations and standardizations. OSDP is particularly valuable for U.S. government applications because it meets federal access control requirements such as PKI for FICAM. Wiring requirements Best practice dictates rewiring a project using RS-485 cabling. Specific wiring requirements are needed for OSDP, including 24 gauge (AWG) stranded cables that are a shielded twisted pair with 120 Ohm impedance and overall lower capacitance. However, especially for shorter cable runs, existing wire from Wiegand installations can sometimes suffice, say if it is a cable run of less than 100 ft. Installers should prove their competency before being deployed to an outside installation “Installation of OSDP is not hard, just different than field technicians are used to deploying,” said Tony Diodato of Cypress Integration Solutions, one of the ISC West presenters. Therefore, training of technicians is paramount, and installers should prove their competency before being deployed to an outside installation in order to avoid problems. Integrators or installing teams should have a “lab” setup to thoroughly familiarise themselves with installation to ensure successful deployments.   Various in-line devices are available to help transition existing Wiegand applications to OSDP, even if one component or other does not support OSDP. For example, data converters enable installation of an OSDP reader with a legacy Wiegand control panel. Replacing existing devices in legacy Wiegand systems with OSDP devices and using data converters can provide some benefits of OSDP without requiring a full “rip-and-replace” installation.