“Barrel distortion” can occur with fisheye cameras, where a circular image is created and a straight line within the captured image appears curved
As the technology in omnidirectional cameras continues to improve, they are becoming increasingly more affordable to a wider segment of the video surveillance market

Just a few years ago, omnidirectional cameras were a novelty. Today, however, this technology has taken the leap to the mainstream. Think about how ubiquitous Google’s Street View is, and you can gain a better idea of the power of omnidirectional cameras. Even consumers are starting to see many forms of omnidirectional cameras, from 360-degree lenses on SLRs to 360-degree video from action cameras.

To that end, 360-degree cameras represent one of the strongest areas of growth in surveillance technology, with global unit shipments forecasted by IHS to increase by more than 60 percent year-on-year.

Omnidirectional Vs. Traditional Cameras

 Both 360- and 180-degree surveillance cameras offer panoramic views, helping reduce the number of traditional narrow field-of-view cameras needed in a single installation. Omnidirectional cameras can also be used in concert with PTZ cameras, or replace them entirely depending on the application. Not only does this help increase situational awareness, it decreases the overall cost of the cameras, installation and maintenance.

Compared to PTZ cameras, omnidirectional cameras have the advantage of being able to pan, tilt and zoom around in both live, as well as stored video, which means operators can pinpoint problems in real-time, ensuring incidents can be resolved quickly and efficiently, and at the same time, go back to stored 360-degree video to conduct investigations.

The option for 180- and 360-degree coverage from a single camera is delivered via a specialized lens on one sensor or a camera that integrates with multiple sensors with conventional lenses aligned to provide an ultra-wide-angle coverage. Single-lens or “fisheye” cameras use a specialized lens called a fisheye lens, which, when compared to a conventional lens, employs different optical design techniques that can lead to the distortion of the captured image when viewing beyond a 90-degree horizontal field-of-view. With this, “barrel distortion” can occur, where a circular image is created and a straight line within the captured image appears curved. ‘Dewarping’ software has to be used to correct this optical illusion.

As a consequence of lens design idiosyncrasies in 180- and 360-degree fisheye cameras, either an oval or circular shaped imaged is created. Since image sensors used in surveillance cameras are square or rectangular, some parts of the sensor are not used.

Increasingly Affordable Solutions

As the technology in these types of cameras continues to improve, they are becoming increasingly more affordable to a wider segment of the video surveillance market. Similarly, higher resolutions and more affordable storage for video data make it more affordable to get increased amounts of coverage and detail at the same time.

As mentioned previously, cost savings can also be realised when a single 360-degree camera replaces three to four fixed cameras, a result that can be recreated in other areas or departments within an organization to help realize additional cost savings.

Fisheye Vs. Multi-Sensor

Fisheye and multi-sensor cameras both create panoramic images, but do so in very different ways.

Fisheye cameras capture the whole scene in a single view without having to stitch images, so the full view of the captured video footage has consistent brightness, sharpness and contrast across the entire scene. Fisheye cameras also offer a number of other benefits: higher reliability as a result of a single sensor, camera and lens arrangement; no blind spots; fixed focus, making installation quicker; lower cost; and a smaller, less obtrusive form factor. Additionally, the dewarping of the image is carried out in the video management system or network video recorder, allowing for higher frame rates at any given bandwidth.

 

If a camera sends a 360-degree image, the VMS software has to dewarp the image so that users can get normal views while electronically PTZ’ing around in the image
Omnidirectional cameras can pan, tilt and zoom around in both live and stored video, which means operators can pinpoint problems in real-time

 However, fisheye cameras may have fewer pixels per foot, depending on the total resolution, and these types of cameras require client-side dewarping to gain the full benefits of retrospective image adjustment – that is, dewarping of stored video for investigations. Multi-sensor cameras, on the other hand, may offer a higher total resolution depending on the individual resolution of each of the sensors within the camera. Here, dewarping is not required since each sensor is, in essence, a narrow field-of-view camera.

Multi-sensor cameras, however, have more than one sensor, which can lead to an overall higher maintenance costs, and with four or more cameras needed to cover a specific area, there is an increased risk that one or more of the sensors can malfunction — in essence, lower reliability. Installation of multi-sensor cameras is also more complicated and more time-intensive. Additionally, the units themselves can be large and bulky, and complex to operator and manage — each view has to be stitched together, which means captured images have to be carefully calibrated with the correct brightness, color, contrast and sharpness for the image to be as clear and seamless as it needs to be for viewing and evidentiary purposes. Other possible considerations include: additional licensing fees for each camera connected to an NVR or VMS, total frame rate is generally lower and bandwidth usage will be high. Also, storage costs are higher.

As businesses look to increase situational awareness by investing in omnidirectional cameras, it’s important to carefully evaluate the technology being implemented and various options before moving forward with an implementation

Dewarping Images

If a camera sends a 360-degree image, the VMS software has to dewarp the image so that users can get normal views while electronically PTZ’ing around in the image. This is called “client-side” dewarping.

With client-side dewarping, images can be dewarped retrospectively — that is, stored video can be dewarped, enabling users to forensically analyze a scene after the fact. The result is that investigations can be carried on as if the video were being watched in real time, making the data indispensable to investigators examining the details of a crime or security breach. Not only does this approach deliver new levels of situational awareness, but it also allows officials to use the data to examine additional areas of interest.

The virtual PTZ function can only be experienced via client-side dewarping for stored video, and it can also be run on still images. Additionally, different parts of the image might be useful for different applications that are hard to predict in advance. For example, a merchandiser may want to zoom in and look at signage or an end cap after the fact to gain better insight into the business. Client-side dewarping may also be run on mobile devices, on either live or on stored video.

One challenge of client-side dewarping is that VMS and NVR platforms have to support this function. There are already a large number of platforms that support this functionality because of end user demand. On the other hand, camera-side dewarping does not require a VMS/NVR platform to integrate this function. Camera-side dewarping means you can only virtually PTZ around in a live scene, which is the same as using a motorized PTZ camera – and this function requires an operator to manually navigate and record what the camera sees. Once these views are fixed, a user may only see those views in stored footage, severely limiting the possibility of being able to capture a wider scene for analysis. This means there may be more blind spots in live and stored video depending on how the views are configured.

Evaluating Technology Implemented

As businesses look to increase situational awareness by investing in omnidirectional cameras, it’s important to carefully evaluate the technology being implemented and various options before moving forward with an implementation. There are a number of pros and cons to dewarping software and the views within the cameras to consider.

But, with higher resolutions and more efficient dewarping/stitching technologies, omnidirectional cameras may soon replace narrow field-of-view and PTZ cameras in a number of vertical markets, including transportation, retail, education, banking and finance, maritime, leisure and gaming, ushering in a new era of total situational awareness with a wealth of data and insight yet untapped.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

Jumbi Edulbehram Regional President, Americas, Oncam

Jumbi is currently the President, Americas for Oncam, a maker of 360 degrees cameras and software. He is responsible for all sales, marketing and business development activities in the Americas. Prior to Oncam, Jumbi served as the Director of Business Development for the security division of Samsung Techwin, where he was responsible for managing strategic partnerships with technology partners, consultants/A&Es, and large national integrators. His team was also responsible for developing new business in industry segments such as retail, government and transportation.

In case you missed it

What Is The Impact Of Remote Working On Security?
What Is The Impact Of Remote Working On Security?

During the coronavirus lockdown, employees worked from home in record numbers. But the growing trend came with a new set of security challenges. We asked this week’s Expert Panel Roundtable: What is the impact of the transition to remote working/home offices on the security market?

Water Plant Attack Emphasizes Cyber’s Impact On Physical Security
Water Plant Attack Emphasizes Cyber’s Impact On Physical Security

At an Oldsmar, Fla., water treatment facility on Feb. 5, an operator watched a computer screen as someone remotely accessed the system monitoring the water supply and increased the amount of sodium hydroxide from 100 parts per million to 11,100 parts per million. The chemical, also known as lye, is used in small concentrations to control acidity in the water. In larger concentrations, the compound is poisonous – the same corrosive chemical used to eat away at clogged drains. The impact of cybersecurity attacks The incident is the latest example of how cybersecurity attacks can translate into real-world, physical security consequences – even deadly ones.Cybersecurity attacks on small municipal water systems have been a concern among security professionals for years. The computer system was set up to allow remote access only to authorized users. The source of the unauthorized access is unknown. However, the attacker was only in the system for 3 to 5 minutes, and an operator corrected the concentration back to 100 parts per million soon after. It would have taken a day or more for contaminated water to enter the system. In the end, the city’s water supply was not affected. There were other safeguards in place that would have prevented contaminated water from entering the city’s water supply, which serves around 15,000 residents. The remote access used for the attack was disabled pending an investigation by the FBI, Secret Service and Pinellas County Sheriff’s Office. On Feb. 2, a compilation of breached usernames and passwords, known as COMB for “Compilation of Many Breaches,” was leaked online. COMB contains 3.2 billion unique email/password pairs. It was later discovered that the breach included the credentials for the Oldsmar water plant. Water plant attacks feared for years Cybersecurity attacks on small municipal water systems have been a concern among security professionals for years. Florida’s Sen. Marco Rubio tweeted that the attempt to poison the water supply should be treated as a “matter of national security.” “The incident at the Oldsmar water treatment plant is a reminder that our nation’s critical infrastructure is continually at risk; not only from nation-state attackers, but also from malicious actors with unknown motives and goals,” comments Mieng Lim, VP of Product Management at Digital Defense Inc., a provider of vulnerability management and threat assessment solutions.The attack on Oldsmar’s water treatment system shows how critical national infrastructure is increasingly becoming a target for hackers as organizations bring systems online “Our dependency on critical infrastructure – power grids, utilities, water supplies, communications, financial services, emergency services, etc. – on a daily basis emphasizes the need to ensure the systems are defended against any adversary,” Mieng Lim adds. “Proactive security measures are crucial to safeguard critical infrastructure systems when perimeter defenses have been compromised or circumvented. We have to get back to the basics – re-evaluate and rebuild security protections from the ground up.” "This event reinforces the increasing need to authenticate not only users, but the devices and machine identities that are authorized to connect to an organization's network,” adds Chris Hickman, Chief Security Officer at digital identity security vendor Keyfactor. “If your only line of protection is user authentication, it will be compromised. It's not necessarily about who connects to the system, but what that user can access once they're inside. "If the network could have authenticated the validity of the device connecting to the network, the connection would have failed because hackers rarely have possession of authorized devices. This and other cases of hijacked user credentials can be limited or mitigated if devices are issued strong, crypto-derived, unique credentials like a digital certificate. In this case, it looks like the network had trust in the user credential but not in the validity of the device itself. Unfortunately, this kind of scenario is what can happen when zero trust is your end state, not your beginning point." “The attack on Oldsmar’s water treatment system shows how critical national infrastructure is increasingly becoming a target for hackers as organizations bring systems online for the first time as part of digital transformation projects,” says Gareth Williams, Vice President - Secure Communications & Information Systems, Thales UK. “While the move towards greater automation and connected switches and control systems brings unprecedented opportunities, it is not without risk, as anything that is brought online immediately becomes a target to be hacked.” Operational technology to mitigate attacks Williams advises organizations to approach Operational Technology as its own entity and put in place procedures that mitigate against the impact of an attack that could ultimately cost lives. This means understanding what is connected, who has access to it and what else might be at risk should that system be compromised, he says. “Once that is established, they can secure access through protocols like access management and fail-safe systems.”  “The cyberattack against the water supply in Oldsmar should come as a wakeup call,” says Saryu Nayyar, CEO, Gurucul.  “Cybersecurity professionals have been talking about infrastructure vulnerabilities for years, detailing the potential for attacks like this, and this is a near perfect example of what we have been warning about,” she says.  Although this attack was not successful, there is little doubt a skilled attacker could execute a similar infrastructure attack with more destructive results, says Nayyar. Organizations tasked with operating and protecting critical public infrastructure must assume the worst and take more serious measures to protect their environments, she advises. Fortunately, there were backup systems in place in Oldsmar. What could have been a tragedy instead became a cautionary tale. Both physical security and cybersecurity professionals should pay attention.

How Have Security Solutions Failed Our Schools?
How Have Security Solutions Failed Our Schools?

School shootings are a high-profile reminder of the need for the highest levels of security at our schools and education facilities. Increasingly, a remedy to boost the security at schools is to use more technology. However, no technology is a panacea, and ongoing violence and other threats at our schools suggest some level of failure. We asked this week’s Expert Panel Roundtable: How have security solutions failed our schools and what is the solution?