Audio is often overlooked in the security and video surveillance industry. There are some intercom installations where audio plays a key role, but it’s not typically thought about when it comes to security and event management. Audio takes a back seat in many security systems because audio captured from a surveillance camera can have a different impact on the privacy of those being monitored.

Audio surveillance is therefore subject to strict laws that vary from state to state. Many states require a clearly posted sign indicating audio recording is taking place in an area before a person enters. Analytic information derived from audio can be a useful tool and when implemented correctly, removes any concerns over privacy or legal compliance.

Audio analytics on the edge overcomes legal challenges as it never passes audio outside of the camera

Focused Responses To Events

Audio analytics processed in the camera, has been a niche and specialized area for many installers and end users. This could be due to state laws governing audio recording, however, audio analytics on the edge overcomes legal challenges as it never passes audio outside of the camera

Processing audio analytics in-camera provides excellent privacy since audio data is analysed internally with a set of algorithms that only compare and assess the audio content. Processing audio analytics on the edge also reduces latency compared with any system that needs to send the raw audio to an on-premises or cloud server for analysis.

Audio analytics can quickly pinpoint zones that security staff should focus on, which can dramatically shorten response times to incidents. Audio-derived data also provides a secondary layer of verification that an event is taking place which can help prioritise responses from police and emergency personnel.

Microphones And Algorithms

Having a SoC allows a manufacturer to reserve space for specialized features, and for audio analytics, a database of reference sounds is needed for comparisonMany IP-based cameras have small microphones embedded in the housing while some have a jack for connecting external microphones to the camera. Microphones on indoor cameras work well since the housing allows for a small hole to permit sound waves to reach the microphone.  Outdoor cameras that are IP66 certified against water and dust ingress will typically have less sensitivity since the microphone is not exposed. In cases like these, an outdoor microphone, strategically placed, can significantly improve outdoor analytic accuracy.

There are several companies that make excellent directional microphones for outdoor use, some of which can also combat wind noise. Any high-quality external microphone should easily outperform a camera’s internal microphone in terms of analytic accuracy, so it is worth considering in areas where audio information gathering is deemed most important.

Surveillance cameras with a dedicated SoC (System on Chip) have become available in recent years with in-built video and audio analytics that can detect and classify audio events and send alerts to staff and emergency for sounds such as gunshots, screams, glass breaks and explosions. Having a SoC allows a manufacturer to reserve space for specialized features. For audio analytics, a database of reference sounds is needed for comparison.

The camera extracts the characteristics of the audio source collected using the camera's internal or externally connected microphone and calculates its likelihood based on the pre-defined database. If a match is found for a known sound, e.g., gunshot, explosion, glass break, or scream, an event is triggered, and the message is passed to the VMS.

Each camera must be custom configured for its particular environment to detect audio levels which exceed a user-defined level
If a match is found for a known sound, e.g., gunshot, explosion, glass break, or scream, an event is triggered, and the message is passed to the VMS

Configuring A Camera For Audio Analytics

  • Audio Detection
    The first job of a well-configured camera or camera/mic pair is to detect sounds of interest while rejecting ancillary sounds and noise below a preset threshold. Each camera must be custom configured for its particular environment to detect audio levels which exceed a user-defined level. Since audio levels are typically greater in abnormal situations, any audio levels exceeding the baseline set levels are detected as being a potential security event. Operators can be notified of any abnormal situations via event signals allowing the operator to take suitable measures. Finding a baseline of background noise and setting an appropriate threshold level is the first step.
  • Noise Reduction
    A simple threshold level may not be adequate enough to reduce false alarms depending on the environment where a camera or microphone is installed. Noise reduction is a feature on cameras that can reduce background noise greater than 55dB-65dB for increased detection accuracy. Installers should be able to enable or disable the noise reduction function and view the results to validate the optimum configuration during setup. With noise reduction enabled, the system analyzes the attenuated audio source. As such, the audio source classification performance may be hindered or generate errors, so it is important to use noise reduction technology sparingly.
  • Audio Source Classification
    It’s important to supply the analytic algorithm with a good audio level and a high signal-to-noise ratio to reduce the chance of generating false alarms under normal circumstances. Installers should experiment with ideal placement for both video as well as audio. While a ceiling corner might seem an ideal location for a camera, it might also cause background audio noise to be artificially amplified. Many cameras provide a graph which visualises audio source levels to allow for the intuitive checking of noise cancellation and detection levels.
  • Messages And Events
    It’s important to choose a VMS that has correctly integrated the camera’s API (application programming interface) in order to receive comprehensive audio analytic events that include the classification ID (explosion, glass break, gunshot, scream). A standard VMS that only supports generic alarms, may not be able to resolve all of the information. More advanced VMS solutions can identify different messages from the camera.

Well configured audio analytics can deliver critical information about a security event, accelerating response times and providing timely details beyond video-only surveillance.  Analytics take privacy concerns out of the equation and allow installers and end users to use camera audio responsibly. Hanwha Techwin's audio source classification technology, available in its X Series cameras, features three customizable settings for category, noise cancellation and detection level for optimum performance in a variety of installation environments.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

In case you missed it

Disruptive Innovation Providing New Opportunities In Smart Cities
Disruptive Innovation Providing New Opportunities In Smart Cities

Growth is accelerating in the smart cities market, which will quadruple in the next four years based on 2020 numbers. Top priorities are resilient energy and infrastructure projects, followed by data-driven public safety and intelligent transportation. Innovation in smart cities will come from the continual maturation of relevant technologies such as artificial intelligence (AI), the Internet of Things (IoT), fifth-generation telecommunications (5G) and edge-to-cloud networking. AI and computer vision (video analytics) are driving challenges in security and safety, in particular, with video management systems (VMSs) capturing video streams and exposing them to various AI analytics. Adoption of disruptive technologies “Cities are entering the critical part of the adoption curve,” said Kasia Hanson, Global Director, Partner Sales, IOT Video, Safe Cities, Intel Corp. “They are beginning to cross the chasm to realize their smart city vision. Cities are taking notice and have new incentives to push harder than before. They are in a better position to innovate.” “Safety and security were already important market drivers responsible for adoption of AI, computer vision and edge computing scenarios,” commented Hanson, in a presentation at the Milestone Integration Platform Symposium (MIPS) 2021. She added: “2020 was an inflection point when technology and the market were ripe for disruption. COVID has accelerated the adoption of disruptive technologies in ways we could not have predicted last year.” Challenges faced by cities Spending in the European Union on public order and safety alone stood at 1.7% of GDP in 2018 Providing wide-ranging services is an expanding need in cities of all sizes. There are currently 33 megacities globally with populations over 10 million. There are also another 4,000 cities with populations over 100,000 inhabitants. Challenges for all cities include improving public health and safety, addressing environmental pressures, enabling mobility, improving quality of life, promoting economic competitiveness, and reducing costs. Spending in the European Union on public order and safety alone stood at 1.7% of GDP in 2018. Other challenges include air quality – 80% of those living in urban areas are exposed to air quality levels that exceed World Health Organization (WHO) limits. Highlighting mobility concerns is an eye-opening statistic from Los Angeles in 2017: Residents spent an average of 102 hours sitting in traffic. Smart technology “The Smart City of Today can enable rich and diverse use cases,” says Hanson. Examples include AI-enabled traffic signals to help reduce air pollution, and machine learning for public safety such as real-time visualization and emergency response. Public safety use cases include smart and connected outdoor lighting, smart buildings, crime prevention, video wearables for field agents, smart kiosks, and detection of noise level, glass breaks, and gunshots. Smart technology will make indoor spaces safer by controlling access to a building with keyless and touchless entry. In the age of COVID, systems can also detect face mask compliance, screen for fever, and ensure physical distancing. 2020 was an inflection point when technology and the smart cities market were ripe for disruption, Kasia Hanson told the MIPS 2021 audience. Video solutions Video workloads will provide core capabilities as entertainment venues reopen after the pandemic. When audiences attend an event at a city stadium, deep learning and AI capabilities analyze customer behaviors to create new routes, pathways, signage and to optimize cleaning operations. Personalized digital experiences will add to the overall entertainment value. In the public safety arena, video enables core capabilities such as protection of people, assets, and property, emergency response, and real-time visualization, and increased situational awareness. Video also provides intelligent incident management, better operational efficiency, and faster information sharing and collaboration. Smart video strategy Intel and Milestone provide video solutions across many use cases, including safety and security Video at the edge is a key element in end-to-end solutions. Transforming data from various point solutions into insights is complicated, time-consuming, and costly. Cities and public venues are looking for hardware, software, and industry expertise to provide the right mix of performance, capabilities, and cost-effectiveness. Intel’s smart video strategy focuses around its OpenVINO toolkit. OpenVINO, which is short for Open Visual Inference and Neural network Optimization, enables customers to build and deploy high-performing computer vision and deep learning inference applications. Intel and Milestone partnership – Video solutions “Our customers are asking for choice and flexibility at the edge, on-premises and in the cloud,” said Hansen in her presentation at the virtual conference. “They want the choice to integrate with large-scale software packages to speed deployment and ensure consistency over time. They need to be able to scale computer vision. Resolutions are increasing alongside growth in sensor installations themselves. They have to be able to accommodate that volume, no matter what causes it to grow.” As partners, Intel and Milestone provide video solutions across many use cases, including safety and security. In effect, the partnership combines Intel’s portfolio of video, computer vision, inferencing, and AI capabilities with Milestone’s video management software and community of analytics partners. Given its complex needs, the smart cities market is particularly inviting for these technologies.

What Are the Physical Security Challenges of Smart Cities?
What Are the Physical Security Challenges of Smart Cities?

The emergence of smart cities provides real-world evidence of the vast capabilities of the Internet of Things (IoT). Urban areas today can deploy a variety of IoT sensors to collect data that is then analyzed to provide insights to drive better decision-making and ultimately to make modern cities more livable. Safety and security are an important aspect of smart cities, and the capabilities that drive smarter cities also enable technologies that make them safer. We asked this week’s Expert Panel Roundtable: What are the physical security challenges of smart cities?

New Markets For AI-Powered Smart Cameras In 2021
New Markets For AI-Powered Smart Cameras In 2021

Organizations faced a number of unforeseen challenges in nearly every business sector throughout 2020 – and continuing into 2021. Until now, businesses have been on the defensive, reacting to the shifting workforce and economic conditions, however, COVID-19 proved to be a catalyst for some to accelerate their long-term technology and digitalization plans. This is now giving decision-makers the chance to take a proactive approach to mitigate current and post-pandemic risks. These long-term technology solutions can be used for today’s new world of social distancing and face mask policies and flexibly repurposed for tomorrow’s renewed focus on efficiency and business optimization. For many, this emphasis on optimization will likely be precipitated by not only the resulting economic impacts of the pandemic but also the growing sophistication and maturity of technologies such as Artificial Intelligence (AI) and Machine Learning (ML), technologies that are coming of age just when they seem to be needed the most.COVID-19 proved to be a catalyst for some to accelerate their long-term technology and digitalization plans Combined with today’s cutting-edge computer vision capabilities, AI and ML have produced smart cameras that have enabled organizations to more easily implement and comply with new health and safety requirements. Smart cameras equipped with AI-enabled intelligent video analytic applications can also be used in a variety of use cases that take into account traditional security applications, as well as business or operational optimization, uses – all on a single camera. As the applications for video analytics become more and more mainstream - providing valuable insights to a variety of industries - 2021 will be a year to explore new areas of use for AI-powered cameras. Optimizing production workflows and product quality in agriculture Surveillance and monitoring technologies are offering value to industries such as agriculture by providing a cost-effective solution for monitoring of crops, business assets and optimizing production processes. As many in the agriculture sector seek to find new technologies to assist in reducing energy usage, as well as reduce the environmental strain of modern farming, they can find an unusual ally in smart surveillance. Some niche farming organizations are already implementing AI solutions to monitor crops for peak production freshness in order to reduce waste and increase product quality.  For users who face environmental threats, such as mold, parasites, or other insects, smart surveillance monitoring can assist in the early identification of these pests and notify proper personnel before damage has occurred. They can also monitor vast amounts of livestock in fields to ensure safety from predators or to identify if an animal is injured. Using video monitoring in the growing environment as well as along the supply chain can also prove valuable to large-scale agriculture production. Applications can track and manage inventory in real-time, improving knowledge of high-demand items and allowing for better supply chain planning, further reducing potential spoilage. Efficient monitoring in manufacturing and logistics New challenges have arisen in the transportation and logistics sector, with the industry experiencing global growth. While security and operational requirements are changing, smart surveillance offers an entirely new way to monitor and control the physical side of logistics, correcting problems that often go undetected by the human eye, but have a significant impact on the overall customer experience. Smart surveillance offers an entirely new way to monitor and control the physical side of logistics, correcting problems that often go undetected by the human eye. Video analytics can assist logistic service providers in successfully delivering the correct product to the right location and customer in its original condition, which normally requires the supply chain to be both secure and ultra-efficient. The latest camera technology and intelligent software algorithms can analyze footage directly on the camera – detecting a damaged package at the loading dock before it is loaded onto a truck for delivery. When shipments come in, smart cameras can also alert drivers of empty loading bays available for offloading or alert facility staff of potential blockages or hazards for incoming and outgoing vehicles that could delay delivery schedules planned down to the minute. For monitoring and detecting specific vehicles, computer vision in combination with video analysis enables security cameras to streamline access control measures with license plate recognition. Smart cameras equipped with this technology can identify incoming and outgoing trucks - ensuring that only authorized vehicles gain access to transfer points or warehouses. Enhance regulatory safety measures in industrial settings  Smart surveillance and AI-enabled applications can be used to ensure compliance with organizational or regulatory safety measures in industrial environments. Object detection apps can identify if employees are wearing proper safety gear, such as facial coverings, hard hats, or lifting belts. Similar to the prevention of break-ins and theft, cameras equipped with behavior detection can help to automatically recognize accidents at an early stage. For example, if a worker falls to the ground or is hit by a falling object, the system recognizes this as unusual behavior and reports it immediately. Going beyond employee safety is the ability to use this technology for vital preventative maintenance on machinery and structures. A camera can identify potential safety hazards, such as a loose cable causing sparks, potential wiring hazards, or even detect defects in raw materials. Other more subtle changes, such as gradual structural shifts/crack or increases in vibrations – ones that would take the human eye months or years to discover – are detectable by smart cameras trained to detect the first signs of mechanical deterioration that could potentially pose a physical safety risk to people or assets. Early recognition of fire and smoke is another use case where industrial decision-makers can find value. Conventional fire alarms are often difficult to properly mount in buildings or outdoor spaces and they require a lot of maintenance. Smart security cameras can be deployed in difficult or hard-to-reach areas. When equipped with fire detection applications, they can trigger notification far earlier than a conventional fire alarm – as well as reduce false alarms by distinguishing between smoke, fog, or other objects that trigger false alarms. By digitizing analog environments, whether a smoke detector or an analog pressure gauge, decision-makers will have access to a wealth of data for analysis that will enable them to optimize highly technical processes along different stages of manufacturing - as well as ensure employee safety and security of industrial assets and resources. Looking forward to the future of smart surveillance With the rise of automation in all three of these markets, from intelligent shelving systems in warehouses to autonomous-driving trucks, object detection for security threats, and the use of AI in monitoring agricultural crops and livestock, the overall demand for computer vision and video analytics will continue to grow. That is why now is the best time for decision-makers across a number of industries to examine their current infrastructure and determine if they are ready to make an investment in a sustainable, multi-use, and long-term security and business optimization solution.