Download PDF version Contact company
With billions of dollars being spent on IP video surveillance, the growth of higher megapixel imaging is a given
From a network performance perspective, adding higher megapixel cameras
affects bandwidth utilization

The quest for higher megapixel, high-definition and high-resolution video imaging continues, only now, it has become a marathon of sorts. That’s because the migration will progress decidedly – extending into the foreseeable future and beyond – as technology advances and becomes increasingly affordable.

Ultra-high-resolution video is finding its niche, even among a competitive and growing global camera manufacturing marketplace. Today, it’s becoming more commonplace to find greater specification and acceptance of 4K resolution, which is nine times the pixel density of standard HD as well as twice the horizontal and vertical resolution of 1080p HDTV. With 4K, camera surveillance is also able to achieve a resolution of at least 3840 x 2160, or 8.3 megapixels, frame rate up to 120 frames per second (fps), aspect ratio 16:9; and color fidelity coupled with a much larger color palette than HDTV.

Demand For Higher Resolution Images Growing Significantly

The marathon to higher megapixels of course mirrors the march to greater bandwidth consumption. For users, it isn’t enough to simply have a viewable picture – it needs to provide potential identification in the lowest light levels and challenging conditions while discerning even the tiniest details in order to satisfy the security industry’s voracious and ever-growing appetite for crystal-clear video surveillance images.

It isn’t enough to simply
have a viewable picture – it
needs to provide potential
identification in the lowest
light levels and challenging
conditions while discerning
even the tiniest details

And that appetite for high-resolution video seems insatiable. According to research firm Memoori’s 2015 annual report on physical security, world sales of video surveillance were more than half (54 percent) of total physical security sales, accounting for close to $15 billion. The research further indicates that the industry has grown at a compound annual rate of 7.82 percent since 2010. In addition, according to Allied Market Research “IP Video Surveillance and VSSAS Market, Opportunities and Forecasts, 2012 to 2020,” by 2020 the projected size of the global IP surveillance market will hit some $57.3 billion.

High Pixel Count, Low Network Performance

With billions of dollars being spent on IP video surveillance, the growth of higher megapixel imaging is a given, and with the move to higher resolution comes a bigger impact on processing power, bandwidth consumption and storage requirements.

From a network performance perspective, adding higher megapixel cameras does have an effect on bandwidth utilization and in theory 4K requires more recording space versus 720p resolution. As a general rule, 1MP requires an average of 1mpbs and an 8 megapixel camera would require at least 8mbps. For video recorded at 30fps second, this could increase to 1.5 to 2mpbs, and with 4K this potentially increases to 12 to 16mbps for each camera.

Bitrate estimation 720p (1MP) 1080p (2MP) 4K (8MP)
10-15 fps 1 Mbps 2Mbps 8Mbps
30 fps 1.5-2 Mbps 3-4 Mbps 12-16 Mbps

 

The drive toward higher resolution cameras requires that manufacturers focus on innovations that work to lessen bandwidth consumption, apply compression algorithms without sacrificing quality and in general encourage and educate the market on more effective and efficient use in applying high resolution video specifications to security and safety systems.

Targeted Surveillance Applications

While greater bandwidth may be necessary for higher resolution video, the highest megapixel cameras are not necessary in every part of the security specification but rather in targeted areas. While delivering crisp images, 4K cameras, for example, provide comprehensive, wide coverage from a single camera, also reducing overall system cost by reducing the total number of necessary surveillance units for the installation. For the integrator, that translates to fewer cameras to install, service and maintain, lowering labor costs. Reducing the total number of cameras required for selected applications also effectively lowers the lifetime cost of the system solution. Fewer cameras covering the same or perhaps more area means less capital outlay for video and more efficient security surveillance by control center personnel.

For specifications such as a large stadium or arena, fewer deployed cameras actually enhance operational efficiency. For example, users can achieve a 9X efficiency in viewing, recording and storage using a four-channel video management system versus 36 channels and the need to toggle among the channels to find the right video. In addition, pan-tilt-zoom is more effective with 4K, requiring less operator control and fostering live monitoring. With 4K cameras viewers get higher resolution and won’t lose any of that image during PTZ operator control.

 

Manufacturers should educate the market on more effective use in applying high resolution video specifications to security and safety systems
4K cameras provide comprehensive, wide coverage from a single camera,
reducing the number of cameras to install, service and maintain

On-board storage is another method to assist with better overall bandwidth management. Recording at the edge frees up network bandwidth and PC processing power, allowing users to view and manage video feeds and store applicable images for later use or transfer to the network when necessary. End users who want to migrate to high-resolution video may make use of edge-based storage when they need high-resolution images at the protected premises, yet don’t have the network bandwidth to fully incorporate a complete IP infrastructure, as a potential cost savings strategy.

Emerging Technologies Save Bandwidth

New techniques related to compression and more efficient use of imaging are also emerging to help offset some of the challenges of moving to higher bandwidth consumption video surveillance. A new technology called Smart Coding, released late last year by Panasonic, significantly lowers the bandwidth and bit rates with no signal degradation while providing up to a 75 percent improvement in bandwidth reduction, depending on the scene and the amount of movement.

It’s certain that the market
will see increasingly higher
resolution cameras and
emerging technologies
designed to make the best
possible use of available
bandwidth

Smart Coding enhances the encoding algorithm in standard H.264 video streams and allows the technology to gather more intelligence within each frame of video to make bandwidth use more efficient. The technology uses a variety of advanced noise reduction processing and algorithm enhancements, including Frequency Divided Filter (FDR); 3-D Multi-Process Noise Reduction (3D-MNR); and Group of Picture Control to achieve a lower bit rate for images without degrading the captured and transmitted video stream.

FDR removes fine noise generated under low illumination (darker images have more noise) to achieve a low bitrate and 3D-MNR removes grain noise generated under low illumination which also results in a lower bit rate. GOP Control removes unnecessary information from the frame to achieve more efficient coding. Together, this new technology helps end users better manage network bandwidth resources, reduce storage requirements and lower the overall total cost of ownership of the system, while still providing crisp, high resolution images.

There are many considerations in deploying high-resolution, megapixel surveillance technology. New methods, techniques and processes will continue to evolve and emerge. Even now, H.264 isn’t the only compression technology. H.265, also known as High Efficiency Video Coding, is the intended successor to H.264. Approved in 2013, the next standard for the codec is designed to further improve video quality, doubling the compression ratio of H.264. However, as with all new technologies there may be issues to address.  For example, while H.265 enables more data to be compressed, that process requires greater power from the PC or microprocessor. In addition, video management software must also have the capabilities to retrieve and view the resulting images, so it’s not quite ready for prime time yet.

What will megapixel video look like in the years to come? It’s not known yet, but it’s certain the market will see increasingly higher resolution cameras and emerging technologies designed to make the best possible use of available bandwidth.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

In case you missed it

What Is The Impact Of Remote Working On Security?
What Is The Impact Of Remote Working On Security?

During the coronavirus lockdown, employees worked from home in record numbers. But the growing trend came with a new set of security challenges. We asked this week’s Expert Panel Roundtable: What is the impact of the transition to remote working/home offices on the security market?

Water Plant Attack Emphasizes Cyber’s Impact On Physical Security
Water Plant Attack Emphasizes Cyber’s Impact On Physical Security

At an Oldsmar, Fla., water treatment facility on Feb. 5, an operator watched a computer screen as someone remotely accessed the system monitoring the water supply and increased the amount of sodium hydroxide from 100 parts per million to 11,100 parts per million. The chemical, also known as lye, is used in small concentrations to control acidity in the water. In larger concentrations, the compound is poisonous – the same corrosive chemical used to eat away at clogged drains. The impact of cybersecurity attacks The incident is the latest example of how cybersecurity attacks can translate into real-world, physical security consequences – even deadly ones.Cybersecurity attacks on small municipal water systems have been a concern among security professionals for years. The computer system was set up to allow remote access only to authorized users. The source of the unauthorized access is unknown. However, the attacker was only in the system for 3 to 5 minutes, and an operator corrected the concentration back to 100 parts per million soon after. It would have taken a day or more for contaminated water to enter the system. In the end, the city’s water supply was not affected. There were other safeguards in place that would have prevented contaminated water from entering the city’s water supply, which serves around 15,000 residents. The remote access used for the attack was disabled pending an investigation by the FBI, Secret Service and Pinellas County Sheriff’s Office. On Feb. 2, a compilation of breached usernames and passwords, known as COMB for “Compilation of Many Breaches,” was leaked online. COMB contains 3.2 billion unique email/password pairs. It was later discovered that the breach included the credentials for the Oldsmar water plant. Water plant attacks feared for years Cybersecurity attacks on small municipal water systems have been a concern among security professionals for years. Florida’s Sen. Marco Rubio tweeted that the attempt to poison the water supply should be treated as a “matter of national security.” “The incident at the Oldsmar water treatment plant is a reminder that our nation’s critical infrastructure is continually at risk; not only from nation-state attackers, but also from malicious actors with unknown motives and goals,” comments Mieng Lim, VP of Product Management at Digital Defense Inc., a provider of vulnerability management and threat assessment solutions.The attack on Oldsmar’s water treatment system shows how critical national infrastructure is increasingly becoming a target for hackers as organizations bring systems online “Our dependency on critical infrastructure – power grids, utilities, water supplies, communications, financial services, emergency services, etc. – on a daily basis emphasizes the need to ensure the systems are defended against any adversary,” Mieng Lim adds. “Proactive security measures are crucial to safeguard critical infrastructure systems when perimeter defenses have been compromised or circumvented. We have to get back to the basics – re-evaluate and rebuild security protections from the ground up.” "This event reinforces the increasing need to authenticate not only users, but the devices and machine identities that are authorized to connect to an organization's network,” adds Chris Hickman, Chief Security Officer at digital identity security vendor Keyfactor. “If your only line of protection is user authentication, it will be compromised. It's not necessarily about who connects to the system, but what that user can access once they're inside. "If the network could have authenticated the validity of the device connecting to the network, the connection would have failed because hackers rarely have possession of authorized devices. This and other cases of hijacked user credentials can be limited or mitigated if devices are issued strong, crypto-derived, unique credentials like a digital certificate. In this case, it looks like the network had trust in the user credential but not in the validity of the device itself. Unfortunately, this kind of scenario is what can happen when zero trust is your end state, not your beginning point." “The attack on Oldsmar’s water treatment system shows how critical national infrastructure is increasingly becoming a target for hackers as organizations bring systems online for the first time as part of digital transformation projects,” says Gareth Williams, Vice President - Secure Communications & Information Systems, Thales UK. “While the move towards greater automation and connected switches and control systems brings unprecedented opportunities, it is not without risk, as anything that is brought online immediately becomes a target to be hacked.” Operational technology to mitigate attacks Williams advises organizations to approach Operational Technology as its own entity and put in place procedures that mitigate against the impact of an attack that could ultimately cost lives. This means understanding what is connected, who has access to it and what else might be at risk should that system be compromised, he says. “Once that is established, they can secure access through protocols like access management and fail-safe systems.”  “The cyberattack against the water supply in Oldsmar should come as a wakeup call,” says Saryu Nayyar, CEO, Gurucul.  “Cybersecurity professionals have been talking about infrastructure vulnerabilities for years, detailing the potential for attacks like this, and this is a near perfect example of what we have been warning about,” she says.  Although this attack was not successful, there is little doubt a skilled attacker could execute a similar infrastructure attack with more destructive results, says Nayyar. Organizations tasked with operating and protecting critical public infrastructure must assume the worst and take more serious measures to protect their environments, she advises. Fortunately, there were backup systems in place in Oldsmar. What could have been a tragedy instead became a cautionary tale. Both physical security and cybersecurity professionals should pay attention.

How Have Security Solutions Failed Our Schools?
How Have Security Solutions Failed Our Schools?

School shootings are a high-profile reminder of the need for the highest levels of security at our schools and education facilities. Increasingly, a remedy to boost the security at schools is to use more technology. However, no technology is a panacea, and ongoing violence and other threats at our schools suggest some level of failure. We asked this week’s Expert Panel Roundtable: How have security solutions failed our schools and what is the solution?