Download PDF version Contact company

If anyone tells you that the use of Mass Notification Systems (MNS) is a new trend, it is likely that they do not fully understand it. You have been impacted by mass notification your whole life. Surprised? Every time there is a fire drill at an elementary school, or a bell chimes noon or a blinking light announces a snow-related parking ban, an MNS is being deployed.

Ultimately, mass notification is just mass communications. What has changed is the distribution methodology, the granularity and specificity of the message, and the ability to customize it to individual recipients or groups. 

The Growing Need For Mass Communications

Our capacity to communicate vastly improved through the 80s and 90s; 1G analog in 1983 was followed by 2G digital in 1990, paving the way for text messaging and IBM’s Simon, the first smartphone in 1993. Digital cable connected to nearly seventy million people by the end of the 20th century. By 1995, wide-scale commercialization of the internet had begun, with social media and instant online chats prevailing through the early 2000s.Advances in communications integration  can be traced to the communications failures experienced in the attack on the World Trade Center

So when did the genesis of modern mass notification occur? The problem garnered little national attention until the 1995 Murrah Federal Building bombing and the 1999 Columbine High School shooting, which saw issues with the immediate and post-crisis victim response. The tipping point was 9/11.

Advances in communications integration and interoperability can be traced to the communications failures experienced by responders to the attack on the World Trade Center. These failures went beyond those traditionally involved in a crisis.

The 9/11 Commission report states: “the ‘first’ first responders on 9/11, as in most catastrophes, were private sector civilians. Because 85 percent of our nation’s critical infrastructure is controlled not by government, but by the private sector, private-sector civilians are likely to be the first responders in any future catastrophe. For that reason, we have assessed the state of private sector and civilian preparedness in order to formulate recommendations to address this critical need.”

Managing The Disaster Life Cycle

Communications failures were tied inexorably to governmental and civilian command and control failures with frustration spreading all the way to the White House. President George Bush issued Homeland Security Presidential Directive 5 (HSPD-5): “to prevent, prepare for, respond to, and recover from terrorist attacks, major disasters, and other emergencies, the United States Government shall establish a single, comprehensive approach to domestic incident management.”

The result was the National Incident Management System (NIMS). NIMS is intended to help manage the disaster life cycle and meet the challenges of timely emergency communication.

Mass notification provides real-time information and instructions to people in a building, area, site, or installation using intelligible voice communications along with visible signals, text, and graphics, and possibly including tactile or other communication methods
The NIMS provides a comprehensive approach to incident management to meet the challenges of timely emergency communication to civilians and emergency services

Most of the fire detection industry views Mass Notification through the “standards” looking glass, with NFPA 72 Chapter 24, UL2572 and the Defence Departments UFC 4-021-01 as the primary players. The UFC standard best exemplifies the most commonly recognized MNS definition in its introduction: “Mass notification provides real-time information and instructions to people in a building, area, site, or installation using intelligible voice communications along with visible signals, text, and graphics, and possibly including tactile or other communication methods.Through distributed messaging systems, MNS can also broadcast alert notifications and evacuation route directions to targeted areas 

"The purpose of mass notification is to protect life by indicating the existence of an emergency situation and instructing people of the necessary and appropriate response and action.”

While there is nothing wrong with that definition, it is often misinterpreted. This stigma unintentionally creates operational silos. Mass notification isn’t just for your building, your campus, or your people. In fact, the greatest value of a well-architected mass notification system is that it can deliver communications to large diverse groups of people sharing a commonality.

Holistic Mass Notification System

While many people associate MNS with fire alarms and text message alerts, today’s systems incorporate numerous other modes of communication from an email notification to strobe lights or automated phone calls, similar to a reverse 911 call. For larger open campuses, an MNS could include a loud speaker, which can sound a siren notification or even an automated message.

Through distributed messaging systems, MNS can also broadcast alert notifications and evacuation route directions to targeted areas in the event of an emergency. For example, in an active shooter situation, leaving a building may actually put more people in harm’s way in some cases.

Depending on the situation, it may be safer for occupants to move to a different floor or area in the building. The same could be said about a weather-related issue, where a display board or email notification would share an alert to take shelter in a basement due to a tornado.

The 21st century mass notification system will be holistic, highly configurable, intuitive and interactive enabling two-way multi-modal communication. It will be inherently network-driven and adaptable to diverse individual and group perceptions, behaviors and needs.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

In case you missed it

What New Technologies And Trends Will Shape Video Analytics?
What New Technologies And Trends Will Shape Video Analytics?

The topic of video analytics has been talked and written about for decades, and yet is still one of the cutting-edge themes in the physical security industry. Some say yesterday’s analytics systems tended to overpromise and underdeliver, and there are still some skeptics. However, newer technologies such as artificial intelligence (AI) are reinvigorating the sector and enabling it to finally live up to its promise. We asked this week’s Expert Panel Roundtable: What new technologies and trends will shape video analytics in 2021?

Tackling The Challenge Of The Growing Cybersecurity Gap
Tackling The Challenge Of The Growing Cybersecurity Gap

The SolarWinds cyberattack of 2020 was cited by security experts as “one of the potentially largest penetrations of Western governments” since the Cold War. This attack put cybersecurity front and center on people’s minds again. Hacking communication protocol The attack targeted the US government and reportedly compromised the treasury and commerce departments and Homeland Security. What’s interesting about the SolarWinds attack is that it was caused by the exploitation of a hacker who injected a backdoor communications protocol.  This means that months ahead of the attack, hackers broke into SolarWinds systems and added malicious code into the company’s software development system. Later on, updates being pushed out included the malicious code, creating a backdoor communication for the hackers to use. Once a body is hacked, access can be gained to many. An explosion of network devices What has made the threat of cyberattacks much more prominent these days has been IT's growth in the last 20 years, notably cheaper and cheaper IoT devices. This has led to an explosion of network devices. IT spending has never really matched the pace of hardware and software growth Compounding this issue is that IT spending has never really matched the pace of hardware and software growth. Inevitably, leading to vulnerabilities, limited IT resources, and an increase in IoT devices get more attention from would-be hackers. Bridging the cybersecurity gap In the author’s view, this is the main reason why the cybersecurity gap is growing. This is because it inevitably boils down to counter-strike versus counter-strike. IT teams plug holes, and hackers find new ones, that is never going to stop. The companies must continue fighting cyber threats by developing new ways of protecting through in-house testing, security best practice sources, and both market and customer leads. End-user awareness One of the key battlegrounds here is the education of end-users. This is an area where the battle is being won at present, in the author’s opinion. End-users awareness of cybersecurity is increasing. It is crucial to educate end-users on what IoT devices are available, how they are configured, how to enable it effectively, and critically, how to use it correctly and safely. Physical security network A valuable product that tackles cybersecurity is, of course, Razberi Monitor™, which is new to ComNet’s portfolio. Monitor™ is a software platform that provides a top-down view of the physical security network and ecosystem. Monitor™ is a software platform that provides a top-down view of the physical security network and ecosystem It monitors and manages all the system components for cybersecurity and system health, providing secure visibility into the availability, performance, and cyber posture of servers, storage, cameras, and networked security devices. Proactive maintenance By intelligently utilizing system properties and sensor data, Razberi’s award-winning cybersecurity software prevents problems while providing a centralized location for asset and alert management. Monitor™ enables proactive maintenance by offering problem resolutions before they become more significant problems. Identifying issues before they fail and become an outage is key to system availability and, moreover, is a considerable cost saving.

Will Airport Security’s Pandemic Measures Lead To Permanent Changes?
Will Airport Security’s Pandemic Measures Lead To Permanent Changes?

Travel volumes at airports have been increasing of late, although still below the 2.5 million or so passengers the Transportation Security Administration (TSA) screened every day, on average, before the pandemic. As passengers return, they will notice the airport security experience has changed during the pandemic – and many of the changes are likely to continue even longer. Need for touchless technology The lowest U.S. air travel volume in history was recorded last April, with approximately 87,500 passengers. As passenger traffic plummeted, the aviation community sought to explore the potential of new technologies to make security checkpoints more contactless and flexible when the traffic numbers return. The pandemic has seen an increase in touchless technology deployed in the screening area. Used for cabin baggage screening, Computed Tomography (CT) produces high-quality, 3-D images to enable a more thorough analysis of a bag’s contents. Imaging Technology Millimeter-wave body scanners began replacing metal detectors globally as a primary screening method Enhanced Advanced Imaging Technology (eAIT), which uses non-ionizing radio-frequency energy in the millimeter spectrum, safely screens passengers without physical contact for threats such as weapons and explosives, which may be hidden under a passenger’s clothing. Millimeter-wave body scanners began replacing metal detectors globally as a primary screening method.  AI algorithms Other innovations include an automatic screening lane, centralized image processing, and artificial intelligence (AI). Looking ahead, AI algorithms have the ability to clear most passengers and bags automatically, making the process smoother and freeing up staff to focus only on alarms. The pandemic’s need for contactless screening may accelerate the adoption of AI.   CAT machine Credential Authentication Technology (CAT) machines automatically verify identification documents presented by passengers during the screening process. The TSA continues to accept expired Driver’s Licenses and state-issued IDs for up to a year after expiration, based on the premise that license renewals may be delayed and/or more difficult during the pandemic. The REAL ID enforcement deadline was extended to Oct. 1, 2021.  Health precautions Checkpoint health precautions have been a part of the airport screening experience since early in the pandemic. Last summer, the TSA announced the “Stay Healthy. Stay Secure” campaign, which included requirements such as social distancing among travelers, ID verification without physical contact, plastic shielding installed at various locations, and increased cleaning and disinfecting. In January 2021, President Biden signed an Executive Order requiring travelers to wear face masks when in airports and other transportation facilities (to remain in effect until May 11). Checkpoint screening Clear is a privately owned company that provides expedited security that uses biometrics either a person’s eyes or face to speed along the process of getting people through checkpoints. TSA officers wear masks and gloves at checkpoints and may also wear eye protection or clear plastic face shields. The limits on allowable liquids a passenger may take on board were broadened to include a hand sanitizer container of up to 12 ounces, one per passenger in a carry-on bag. a paradigm shift Just as aviation security changed after 9/11, the COVID-19 crisis is expected to lead to a paradigm shift to create a safer and more secure environment. Measures were implemented so that passengers, staff and other stakeholders could have continued assurance and confidence in airports amid and after the pandemic.