In 2017, IoT-based cyberattacks increased by 600%. As the industry moves towards the mass adoption of interconnected physical security devices, end users have found a plethora of advantages, broadening the scope of traditional video surveillance solutions beyond simple safety measures.

Thanks in part to these recent advancements, our physical solutions are at a higher risk than ever before. With today’s ever evolving digital landscape and the increasing complexity of physical and cyber-attacks, it’s imperative to take specific precautions to combat these threats.

Video surveillance systems

Cybersecurity is not usually the first concern to come to mind

When you think of a video surveillance system, cybersecurity is not usually the first concern to come to mind, since digital threats are usually thought of as separate from physical security. Unfortunately, these two are becoming increasingly intertwined as intruders continue to use inventive methods in order to access an organization's assets.

Hacks and data breaches are among the top cyber concerns, but many overlook the fact that weak cybersecurity practices can lead to physical danger as well. Organizations that deploy video surveillance devices paired with advanced analytics programs often leave themselves vulnerable to a breach without even realizing it. While they may be intelligent, IoT devices are soft targets that cybercriminals and hackers can easily exploit, crippling a physical security system from the inside out.

Physical security manufacturers

Whether looking to simply gain access to internal data, or paralyze a system prior to a physical attack, allowing hackers easy access to surveillance systems can only end poorly. In order to stay competitive, manufacturers within the security industry are trading in their traditional analog technology and moving towards interconnected devices.

Due to this, security can no longer be solely focused on the physical elements and end users have taken note. The first step towards more secured solutions starts with physical security manufacturers choosing to make cybersecurity a priority for all products, from endpoint to edge and beyond. Gone are the days of end users underestimating the importance of reliability within their solutions. Manufacturers that choose to invest time and research into the development of cyber-hardening will be ahead of the curve and an asset to all.

Wireless communication systems

Integrators also become complicit in any issues that may arise in the future

Aside from simply making the commitment to improve cyber hygiene, there are solid steps that manufacturers can take. One simple action is incorporating tools and features into devices that allow end users to more easily configure their cyber protection settings. Similarly, working with a third party to perform penetration testing on products can help to ensure the backend security of IoT devices. This gives customers peace of mind and manufacturers a competitive edge.

While deficient cybersecurity standards can reflect poorly on manufacturers by installing vulnerable devices on a network, integrators also become complicit in any issues that may arise in the future. Just last year, ADT was forced to settle a $16 million class action lawsuit when the company installed an unencrypted wireless communication system that rendered an organization open to hacks.

Cybersecurity services

In addition, we’ve all heard of the bans, taxes and tariffs the U.S. government has recently put on certain manufacturers, depending on their country of origin and cybersecurity practices. Lawsuits aside, employing proper cybersecurity standards can give integrators a competitive advantage.

With the proliferation of hacks, malware, and ransomware, integrators that can ease their client's cyber-woes are already a step ahead. By choosing to work with cybersecurity-focused manufacturers who provide clients with vulnerability testing and educate end users on best practices, integrators can not only thrive but find new sources of RMR. Education, collaboration and participation are three pillars when tackling cybersecurity from all angles. For dealers and integrators who have yet to add cybersecurity services to their business portfolios, scouting out a strategic IT partner could be the answer.

Unlocking countless opportunities

Becoming educated on the topic of cybersecurity and its importance for an organization is the first step

Physical security integrators who feel uncomfortable diving headfirst into the digital realm may find that strategically aligning themselves with an IT or cyber firm will unlock countless opportunities. By opening the door to a partnership with an IT-focused firm, integrators receive the benefit of cybersecurity insight on future projects and a new source of RMR through continued consulting with current customers.

In exchange, the IT firm gains a new source of clients in an industry otherwise untapped. This is a win for all those involved. While manufacturers, dealers and integrators play a large part in the cybersecurity of physical systems, end users also play a crucial role. Becoming educated on the topic of cybersecurity and its importance for an organization is the first step.

Commonplace cybersecurity standards

Below is a list of commonplace cybersecurity standards that all organizations should work to implement for the protection of their own video surveillance solutions:

  • Always keep camera firmware up to date for the latest cyber protections.
  • Change default passwords, especially those of admins, to keep the system locked to outside users.
  • Create different user groups with separate rights to ensure all users have only the permissions they need.
  • Set an encryption key for surveillance recordings to safeguard footage against intruders and prevent hackers from accessing a system through a backdoor.
  • Enable notifications, whether for error codes or storage failures, to keep up to date with all systems happenings.
  • Create/configure an OpenVPN connection for secured remote access.
  • Check the web server log on a regular basis to see who is accessing the system.
  • Ensure that web crawling is forbidden to prevent images or data found on your device from being made searchable.
  • Avoid exposing devices to the internet unless strictly necessary to reduce the risk of attacks.
Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version

Author profile

Joe Byron Vice President of Sales, MOBOTIX Corp

In case you missed it

What are the Security Challenges of Protecting the Cannabis Industry?
What are the Security Challenges of Protecting the Cannabis Industry?

The advent of a truly new market for the physical security industry is a rare occurrence. Particularly rare is a new market that is both fast-growing and provides an environment that is not just conducive to application of physical security technologies but that actually demands it. Such is the case with the market for legalized marijuana. We asked this week’s Expert Panel Roundtable: What are the security challenges of protecting the cannabis industry?

Wireless Technology Is Transforming Motion Detection
Wireless Technology Is Transforming Motion Detection

Motion detection is a key feature of security systems in residential and commercial environments. Until recently, systems have relied heavily on closed circuit television (CCTV) and passive infrared (PIR) sensors, which both require significant investment and infrastructure to install and monitor. Developments in wireless technology are increasing home security possibilities. Few years ago, these developments led Cognitive Systems to discover that the wireless signals surrounding oneself can be used to detect motion. Known in the wireless industry as WiFi sensing, this technology brings many benefits that other motion detection solutions have not been able to provide. The working of WiFi sensing At Cognitive Systems, the company has used WiFi sensing technology to develop a motion detection solution called WiFi Motion™, which measures and interprets disruptions in RF signals transmitted between WiFi devices. When movement occurs in a space, ripples in the wireless signals are created. WiFi Motion interprets these ripples and determines if an action, such as sending a notification, is needed. Enabling this functionality in a space is incredibly simple. With a software upgrade to only one’s WiFi access point (or mesh router), motion sensing capabilities are layered into one’s WiFi network. Existing connected WiFi devices then become motion detectors without detracting from their original functions or slowing down the network. Using artificial intelligence (AI), WiFi Motion establishes a benchmark of the motionless environment and learns movement patterns over time, which could be used to predict trends. This allows unusual movement patterns to be detected with greater accuracy while decreasing the potential for costly false alerts. WiFi Motion requires no line-of-sight or installation WiFi sensing and other home monitoring solutions All of these capabilities are made possible by WiFi sensing and together create a motion detection system that provides unparalleled accuracy, coverage, privacy and affordability compared to other solutions on the market. PIR integration is far more complex and imposes electronic and physical design restrictions compared to WiFi sensing. In terms of placement, PIR systems are difficult to install, requiring line-of-sight and a device in every room for localization. WiFi Motion requires no line-of-sight or installation and is also a scalable solution compared to PIR. Much like cameras, PIRs can only cover so much space, but WiFi Motion can cover the entire home and even detect motion in the dark and through walls, without adding additional devices to the home. WiFi Motion detects less distinguishing context than cameras and microphones, but more context than regular PIR sensors for the perfect balance of privacy and highly accurate motion detection. Privacy solution While cameras have been the security solution for years, WiFi Motion offers a more affordable solution that can rival the privacy and coverage capabilities of even the most high-end cameras. With such a wide coverage area, one might think that WiFi sensing infringes on privacy, but actually, the opposite is true. With WiFi Motion, the contextual information collected cannot be used to identify a specific individual, unlike cameras which can clearly identify a person’s face or microphones, which can identify a person’s voice. It is different from other smart home security options that use cameras and microphones because it only senses motion using WiFi signals - it doesn’t “see” or “listen” like a camera or microphone would. This provides opportunities for added security in spaces where privacy might be a concern and installing a camera may not be a comfortable solution, such as bathrooms and bedrooms. The data collected is also anonymized and highly encrypted according to stringent industry privacy standards. Existing connected WiFi devices then become motion detectors Additional WiFi sensing applications Since WiFi sensing technology requires no additional hardware or subscription fees, it is much more affordable than other motion detection solutions. It can be used as a standalone solution, or it can be easily layered into more complex systems. This ease of integration, scalability and relatively low cost brings a lot of potential for various applications. Motion detection can trigger other smart devices in the network to turn lights on or off In eldercare, for example, WiFi sensing can be used to help seniors live comfortably in their homes for as long as possible. With the increasing aging population and high costs associated with care homes, the market for this application is considerable. Caregivers can use an app to monitor movement in their loved one’s home and be alerted about unusual movement patterns that could indicate a concern. For smart homes and other environments that have a network of smart devices, the artificial intelligence (AI) component of the technology allows for improvements to automated features. Motion detection can trigger other smart devices in the network to turn lights on or off or make adjustments to the temperature in a room. Security for the commercial sector For office buildings and other commercial properties, it is easy to see how all of these features could be scaled up to offer a highly accurate and cost-effective motion sensing and smart device automation solution. Cognitive Systems is closely involved with the development of WiFi sensing technology, working with various industry groups to establish standards and help it reach its full potential. WiFi Motion is merely the tip of the iceberg in terms of motion sensing possibilities, but its applications in the world of security are undeniably compelling. It is an exciting time for the wireless industry, as one works with stakeholders in the security space to explore everything this technology can do.

Enforcing Face Masks Without Confrontation Or Bias
Enforcing Face Masks Without Confrontation Or Bias

The COVID-19 pandemic has presented an unprecedented challenge to businesses. From retail stores to office buildings to warehouses and construction sites, a big question looms: how can landlords, executives, and employers ensure their facilities don’t contribute to the spread of the virus? A low-tech solution - the face mask - has become a leading preventative measure. But, a high-tech solution is necessary to ensure that everyone is wearing them. Cameras powered by artificial intelligence can now identify whether or not people entering a facility are wearing facemasks and help enforce adherence to mask mandates. This technology is proving to be a cost effective solution that reduces risks of confrontations over masks policies and gives managers the data they need to document regulatory compliance and reduce liability. Layers of security They can also be integrated into access control systems or woven into other preventative measures that create overlapping layers of security. These cameras are an ideal solution for low-traffic, remote sites, or areas that are only accessible to employees that need to monitor mask compliance but at which hiring a manned guard is just too expensive. Cameras with mask detection capabilities are especially useful when the technology piggybacks on existing autonomous devices, such as mobile security drones. The premise is simple. When a person without a mask is detected by the autonomous robotic security device, the system can generate, depending on customer preferences, audible and visible alerts to remind people to mask up. It also feeds alerts to a cloud-based data storage system so that security executives can analyze data for trends or quickly locate video of important incidents. Why masks? One study published in the Proceedings of the Royal Society A highlights the benefits of mask usage. If just 50 percent of people use masks, the rate of COVID-19 transmission will slowly decline. If 80 percent of people use them, the rate will plummet. Bu,t people don’t love wearing them. They’re hot. They make eyeglasses foggy. It’s hard to make yourself heard when talking to others. We’re all familiar with industries that wear masks of some type or other, on a regular basis - health care, construction, and heavy industry to name a few. But for the general public, wearing a mask for long periods of time is not a regular habit. For the general public, wearing a mask for long periods of time is not a regular habit We also know that other measures site managers have used to limit the spread of coronavirus are ineffective. For example, at least three meatpacking plants rank among the top 50 locations for coronavirus clusters. One factor driving that spread: many employees, to avoid missing a day’s pay, masked their mild fevers with ibuprofen to fool the infrared temperature scanners that employers used to protect against the outbreak. The paradox of masks, however, isn’t that they protect the wearer from infection. It’s the other way around: when an infected person wearing a mask sneezes, coughs, or breathes, they don’t spread the virus as far, and thus masks slow the spread of the virus from infected people, including those that are not showing symptoms. Prove it One of the very reasons why county and state governments have instituted mask orders is simple: it’s an easily verifiable sign that an organization is taking steps to limit the spread of coronavirus. Mask detection cameras, coupled with autonomous security systems, can provide the documentation employers need to ensure mask compliance. Imagine, for example, a warehouse full of manual laborers. The county orders everyone to wear a mask any time they leave home. A disgruntled employee, recently terminated, files an anonymous complaint to local health officials stating that the warehouse isn’t enforcing mask compliance - or worse, preventing employees from wearing masks to prevent theft. The county sends an inspector. Mask detection cameras provide site managers with the documentation they need to disprove these allegations. The autonomous systems developed by RAD will feed video footage into a cloud database, documenting not only the instances of non-compliance, but also the instances of compliance - with the mask clearly highlighted. Any inspector that arrives on a job site can see hours and hours of footage, without having to pour through hours of video. Reducing confrontation We’ve all seen the videos in which angry shoppers confront retail clerks and security guards over mask usage. In some cases, these confrontations have turned violent, resulting in injury or death. For every one of these videos, there may well be hundreds of others. While most of the videos featuring mask confrontations focus on retail settings, manned guards also face challenges in enforcement. Confrontations over mask usage have the potential to drive up workman’s compensation claims higher when guards are injured. Because autonomous security units generate alerts automatically, the chance of confrontation is minimised. It’s easy to imagine a couple of scenarios in which autonomous units can be beneficial. In health care settings, where emotions run high, autonomous devices can serve as a force multiplier for patrolling guards in parking areas. For example, roving units can identify people that are not wearing masks, and remind them to do so before they enter the building. These can also be placed in entryways that generate alerts as visitors approach doors. In many buildings, mask detection systems can be integrated into access control systems Autonomous security units can be deployed for a fraction of the cost of manned security. In healthcare, autonomous units can be used to re-allocate security spending, placing less emphasis on low intensity guards whose primary function is to observe and report - particularly those that patrol parking garages - and more emphasis on trained professionals capable of defusing confrontations inside the hospital. In other words, autonomous units outside allow facilities to hire better quality inside, where confrontations are most likely to take place. In many buildings, mask detection systems can be integrated into access control systems, which might be especially useful at entrances that are not manned by security, but accessible via key card. Changing behaviors There was a time when smoking in public was not seen as particularly anti-social. Almost everyone will stop at a stop sign, even when we can see for miles in every direction, and we know that the risk of an accident is zero. We do these things because we have been trained to. These behaviors make us safer, but we didn’t adopt them overnight. Many of us forget, but the fight over banning smoking in bars and restaurants was filled with confrontation. So, too, will it be with mask compliance. But time is short, and we all need to do everything we can to encourage good behavior. Mask detection technology can do that, and these solutions are very cost effective. In some cases, the cost may be just 5 percent of using a manned guard. They’re effective too. Autonomous systems enforce mask policies consistently and drive accountability. That can make us all safer.