Artificial Intelligence. You’ve heard the words in just about every facet of our lives, just two words, and they’re quite possibly the most moving, life-changing words employed in everyday conversations. So what exactly is AI, who currently uses it and should be using it?

What Is AI?

AI is a powerful way of collecting, qualifying and quantifying data toward a meaningful conclusion to help us reach decisions more quickly or automate processes which could be considered mundane or repetitive. AI in its previous state was known as “machine learning” or “machine processing” which has evolved into “deep learning” or, here in the present, Artificial Intelligence.

AI as it applies to the security and surveillance industry provides us the ability to discover and process meaningful information more quickly than at any other time in modern history. Flashback - VCR tapes, blurred images, fast-forward, rewind and repeat. This process became digital, though continued to be very time-consuming. Today’s surveillance video management systems have automated many of these processes with features like “museum search” seeking an object removed from a camera view or “motion detection” to create alerts when objects move through a selected viewpoint. These features are often confused with AI, and are really supportive analytics of the Artificial Intelligence, not AI themselves.

Machine Learning

Fully appreciating AI means employment of a machine or series of machines to collect, process and produce information obtained from basic video features or analytics. What the machines learn depends on what is asked of them. The truth is, the only way the AI can become meaningful is if there is enough information learned to provide the results desired. If there isn’t enough info, then we must dig deeper for information or learn more, properly described as “deep-learning” AI. Translated, this means that we need to learn more on a deeper level in order to obtain the collaborative combined information necessary to produce the desired result.

Deep Learning AI

Deep learning AI can afford us the ability to understand more about person characteristic traits & behaviors. Applying this information can then further be applied to understand how to interpret patterns of behavior with the end goal of predictable behavior. This prediction requires some degree of human interpretation so that we are able to position ourselves to disrupt patterns of negative behavior or simply look for persons of interest based on these patterns of behavior. These same patterns evolve into intelligence which over time increases the machine’s ability to more accurately predict patterns that could allow for actions to be taken as a result.

This intelligence which is now actionable could translate to life safety such as stopping a production manufacturing process, if a person were to move into an area where they shouldn’t be which might put them in danger.

Useful Applications Of Intelligence 

Informative knowledge or intelligence gathered could be useful in retail applications as well by simply collecting traffic patterns as patrons enter a showroom. This is often displayed in the form of heat mapping of the most commonly traveled paths or determining choke points that detract from a shopper’s experience within the retail establishment. It could also mean relocating signage to more heavily traveled foot-paths to gain the highest possible exposure to communicating a sale or similar notice, perhaps lending itself to driving higher interest to a sale or product capability. Some of this signage or direction could even translate to increased revenues by realigning the customer engagement and purchasing points.

Actionable Intelligence

From a surveillance perspective, AI could be retranslated to actionable intelligence by providing behavioral data to allow law enforcement to engage individuals with malicious intent earlier, thus preventing crimes in whole or in part based on previously learned data. The data collection points now begin to depart from a more benign, passive role into an actionable role. As a result, new questions are being asked regarding the cameras intended purpose or role of its viewpoint such as detection, observation, recognition or identification.

Detecting Human Presence

By way of example, a camera or data collector may need to detect human presence, as well as positively identify who the person is. So the analytic trip line is crossed or motion box activated or counter-flow is detected which then creates an alert for a guard or observer to take action. Further up the food chain, a supervisor is also notified and the facial characteristics are captured. These remain camera analytics, but now we feed this collected facial information to a graphic processing unit (GPU) which could be employed to compare captured characteristics with pre-loaded facial characteristics. When the two sources are compared and a match produced, an alert could be generated which results in an intervention or other similar action with the effort of preventing a further action. This process- detect, disrupt, deter or detain could be considered life-saving by predictably displaying possible outcomes in advance of the intended actions.

The next level is deep-learning AI which employs the same characteristics to determine where else within the CCTV ecosystem the individual may have been previously by comparatively analyzing other collected video data. This becomes deep-learning AI when the GPU machine is able to learn from user-tagged positive identification, which the machine learns and begins to further reprocess its own data to further understand where else the person of interest (POI) may have existed on the ecosystem and more correctly improve its own predictive capabilities, thus becoming faster at displaying alerts and better at the discovery of previously archived video data.

The Future

In conclusion, the future of these “predictables” wholly rests in the hands of the purchasing end-user. Our job is to help everyone understand the capabilities and theirs is to continue to make the investment so that the research perpetuates upon itself. Just think where we’d be if purchasers didn’t invest in the smartphone?

 

 

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

In case you missed it

Why Visualization Platforms Are Vital For An Effective Security Operation Center (SOC)
Why Visualization Platforms Are Vital For An Effective Security Operation Center (SOC)

Display solutions play a key role in SOCs in providing the screens needed for individuals and teams to visualize and share the multiple data sources needed in an SOC today. Security Operation Center (SOC) Every SOC has multiple sources and inputs, both physical and virtual, all of which provide numerous data points to operators, in order to provide the highest levels of physical and cyber security, including surveillance camera feeds, access control and alarm systems for physical security, as well as dashboards and web apps for cyber security applications. Today’s advancements in technology and computing power not only have increasingly made security systems much more scalable, by adding hundreds, if not thousands, of more data points to an SOC, but the rate at which the data comes in has significantly increased as well. Accurate monitoring and surveillance This has made monitoring and surveillance much more accurate and effective, but also more challenging for operators, as they can’t realistically monitor the hundreds, even thousands of cameras, dashboards, calls, etc. in a reactive manner. Lacking situational awareness is often one of the primary factors in poor decision making In order for operators in SOC’s to be able to mitigate incidents in a less reactive way and take meaningful action, streamlined actionable data is needed. This is what will ensure operators in SOC truly have situational awareness. Situational awareness is a key foundation of effective decision making. In its simplest form, ‘It is knowing what is going on’. Lacking situational awareness is often one of the primary factors in poor decision making and in accidents attributed to human error. Achieving ‘true’ situational awareness Situational awareness isn’t just what has already happened, but what is likely to happen next and to achieve ‘true’ situational awareness, a combination of actionable data and the ability to deliver that information or data to the right people, at the right time. This is where visualization platforms (known as visual networking platforms) that provide both the situational real estate, as well as support for computer vision and AI, can help SOCs achieve true situational awareness Role of computer vision and AI technologies Proactive situational awareness is when the data coming into the SOC is analyzed in real time and then, brought forward to operators who are decision makers and key stakeholders in near real time for actionable visualization. Computer vision is a field of Artificial Intelligence that trains computers to interpret and understand digital images and videos. It is a way to automate tasks that the human visual system can also carry out, the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images. There are numerous potential value adds that computer vision can provide to operation centers of different kinds. Here are some examples: Face Recognition: Face detection algorithms can be applied to filter and identify an individual. Biometric Systems: AI can be applied to biometric descriptions such as fingerprint, iris, and face matching. Surveillance: Computer vision supports IoT cameras used to monitor activities and movements of just about any kind that might be related to security and safety, whether that's on the job safety or physical security. Smart Cities: AI and computer vision can be used to improve mobility through quantitative, objective and automated management of resource use (car parks, roads, public squares, etc.) based on the analysis of CCTV data. Event Recognition: Improve the visualization and the decision-making process of human operators or existing video surveillance solutions, by integrating real-time video data analysis algorithms to understand the content of the filmed scene and to extract the relevant information from it. Monitoring: Responding to specific tasks in terms of continuous monitoring and surveillance in many different application frameworks: improved management of logistics in storage warehouses, counting of people during event gatherings, monitoring of subway stations, coastal areas, etc. Computer Vision applications When considering a Computer Vision application, it’s important to ensure that the rest of the infrastructure in the Operation Center, for example the solution that drives the displays and video walls, will connect and work well with the computer vision application. The best way to do this of course is to use a software-driven approach to displaying information and data, rather than a traditional AV hardware approach, which may present incompatibilities. Software-defined and open technology solutions Software-defined and open technology solutions provide a wider support for any type of application the SOC may need Software-defined and open technology solutions provide a wider support for any type of application the SOC may need, including computer vision. In the modern world, with everything going digital, all security services and applications have become networked, and as such, they belong to IT. AV applications and services have increasingly become an integral part of an organization’s IT infrastructure. Software-defined approach to AV IT teams responsible for data protection are more in favor of a software-defined approach to AV that allow virtualised, open technologies as opposed to traditional hardware-based solutions. Software’s flexibility allows for more efficient refreshment cycles, expansions and upgrades. The rise of AV-over-IP technologies have enabled IT teams in SOC’s to effectively integrate AV solutions into their existing stack, greatly reducing overhead costs, when it comes to technology investments, staff training, maintenance, and even physical infrastructure. AV-over-IP software platforms Moreover, with AV-over-IP, software-defined AV platforms, IT teams can more easily integrate AI and Computer Vision applications within the SOC, and have better control of the data coming in, while achieving true situational awareness. Situational awareness is all about actionable data delivered to the right people, at the right time, in order to address security incidents and challenges. Situational awareness is all about actionable data delivered to the right people Often, the people who need to know about security risks or breaches are not physically present in the operation centers, so having the data and information locked up within the four walls of the SOC does not provide true situational awareness. hyper-scalable visual platforms Instead there is a need to be able to deliver the video stream, the dashboard of the data and information to any screen anywhere, at any time — including desktops, tablets phones — for the right people to see, whether that is an executive in a different office or working from home, or security guards walking the halls or streets. New technologies are continuing to extend the reach and the benefits of security operation centers. However, interoperability plays a key role in bringing together AI, machine learning and computer vision technologies, in order to ensure data is turned into actionable data, which is delivered to the right people to provide ‘true’ situational awareness. Software-defined, AV-over-IP platforms are the perfect medium to facilitate this for any organizations with physical and cyber security needs.

What New Technologies And Trends Will Shape Video Analytics?
What New Technologies And Trends Will Shape Video Analytics?

The topic of video analytics has been talked and written about for decades, and yet is still one of the cutting-edge themes in the physical security industry. Some say yesterday’s analytics systems tended to overpromise and underdeliver, and there are still some skeptics. However, newer technologies such as artificial intelligence (AI) are reinvigorating the sector and enabling it to finally live up to its promise. We asked this week’s Expert Panel Roundtable: What new technologies and trends will shape video analytics in 2021?

Tackling The Challenge Of The Growing Cybersecurity Gap
Tackling The Challenge Of The Growing Cybersecurity Gap

The SolarWinds cyberattack of 2020 was cited by security experts as “one of the potentially largest penetrations of Western governments” since the Cold War. This attack put cybersecurity front and center on people’s minds again. Hacking communication protocol The attack targeted the US government and reportedly compromised the treasury and commerce departments and Homeland Security. What’s interesting about the SolarWinds attack is that it was caused by the exploitation of a hacker who injected a backdoor communications protocol.  This means that months ahead of the attack, hackers broke into SolarWinds systems and added malicious code into the company’s software development system. Later on, updates being pushed out included the malicious code, creating a backdoor communication for the hackers to use. Once a body is hacked, access can be gained to many. An explosion of network devices What has made the threat of cyberattacks much more prominent these days has been IT's growth in the last 20 years, notably cheaper and cheaper IoT devices. This has led to an explosion of network devices. IT spending has never really matched the pace of hardware and software growth Compounding this issue is that IT spending has never really matched the pace of hardware and software growth. Inevitably, leading to vulnerabilities, limited IT resources, and an increase in IoT devices get more attention from would-be hackers. Bridging the cybersecurity gap In the author’s view, this is the main reason why the cybersecurity gap is growing. This is because it inevitably boils down to counter-strike versus counter-strike. IT teams plug holes, and hackers find new ones, that is never going to stop. The companies must continue fighting cyber threats by developing new ways of protecting through in-house testing, security best practice sources, and both market and customer leads. End-user awareness One of the key battlegrounds here is the education of end-users. This is an area where the battle is being won at present, in the author’s opinion. End-users awareness of cybersecurity is increasing. It is crucial to educate end-users on what IoT devices are available, how they are configured, how to enable it effectively, and critically, how to use it correctly and safely. Physical security network A valuable product that tackles cybersecurity is, of course, Razberi Monitor™, which is new to ComNet’s portfolio. Monitor™ is a software platform that provides a top-down view of the physical security network and ecosystem. Monitor™ is a software platform that provides a top-down view of the physical security network and ecosystem It monitors and manages all the system components for cybersecurity and system health, providing secure visibility into the availability, performance, and cyber posture of servers, storage, cameras, and networked security devices. Proactive maintenance By intelligently utilizing system properties and sensor data, Razberi’s award-winning cybersecurity software prevents problems while providing a centralized location for asset and alert management. Monitor™ enables proactive maintenance by offering problem resolutions before they become more significant problems. Identifying issues before they fail and become an outage is key to system availability and, moreover, is a considerable cost saving.