Download PDF version Contact company

Alticor manufactures and sells personal care products for more than three million independent business owners around the world. It also has a number of subsidiaries, including Amway, the widely known direct sales organization; Quixtar®, an Internet ordering business; and Access Business Group, a manufacturing, distribution and warehousing organization making products for Amway and other companies that need extra capacity.

Secure Access Control For Alticor HQ

Based in Ada, Michigan, Alticor’s world headquarters spans more than one million square feet and houses approximately 4,500 employees. In addition, there are satellite warehouse and distribution centers in Georgia, Texas, Washington and California.

Keeping its personal care products secure is important to Alticor. Although it has not experienced any contamination of its products through security breaches, internal experts recognized that such a breach could be devastating. This is why they wanted to initiate state-of-the art technology to provide secure access control at their headquarters and several distribution centers.

“Our vision is to be a one-card system with HID iCLASS® cards,” said Harold Crawford, Alticor’s Protection Services Special Projects Manager. “Right now, we are using these cards in all locations except those in California, which already had its own legacy ID card system. We hope to convert all of our U.S. facilities to iCLASS by the end of 2008.” “We try to be ahead of the curve,” said Crawford. “Many companies come to us to benchmark their internal security operations.”

Alticor’s Major Card Change Project

Alticor has a long history with Fargo®. It was an early adopter of ID card security ten years ago, using Fargo Persona® card printers. In 2000, Crawford purchased three Fargo DTC515 Directto-Card Printer/Encoders for access control and one DTC720 to produce a special application lockout card.

This OSHA-required safety tag is an oversized, double-sided card that includes a person’s photo and warns people to avoid areas where employees are working under dangerous conditions. In many cases, the lives of those workers might be on the line.

"We thought if we were going to move ahead with technology, we should get a system that would be good for the future"

In 2005, Alticor began yet another major card change project. Facing price increases by as much as 100 percent over three years for its existing access control cards and recognizing that technology had advanced significantly in recent years, security managers added new card access panel controllers with HID card readers and began producing HID iCLASS cards with five new Fargo HDP600 High Definition Card Printer/Encoders.

HID iCLASS Contactless Proximity Cards

High Definition Printing™ (HDP®) technology prints an image onto a special film, which is then fused to the card, forming a virtually tamper-proof bond. This process also enables printing on cards with irregular surfaces, such as smart cards with embedded electronics. iCLASS contactless proximity cards provide a high degree of data integrity and the ability to add features, such as magnetic stripes, bar codes and anti-counterfeiting elements. Data is encrypted, reducing the risk of compromised security. Access control is not only more versatile, but also more secure. It is especially useful for companies that have users needing access at more than one site, as data can be verified at multiple locations.

“We thought if we were going to move ahead with technology, we should get a system that would be good for the future,” said Crawford. He was guided in his decision by Kier Breckon of Richardson Business Machines in Grand Rapids, Mich., a Fargo® solutions and service provider.

“I give Alticor a lot of credit for a very meticulous planning and evaluation process,” said Breckon. “The company was very organized, which isn’t typical of many organizations. Alticor wanted a solution that provided flexibility for future projects and processes. There was good leadership and a defined goal. That’s why Alticor is ahead of the game.”

“Our department’s ten-member management team consists of proactive thinkers,” Crawford added. “We meet twice a month to discuss and make decisions regarding security issues. We’ve been doing this since 1994. We are a well-oiled security machine and believe we are ahead of the competition in this regard. Many companies benchmark against our operations.”

The Result: Greater Employee Security

At Alticor, all employees are now required to use ID cards to enter the facilities. In addition, there is a company store at which employees, spouses and dependents who meet certain criteria can shop, and an on-site fitness facility. Special cards are issued to spouses and dependents for these purposes. Separate ID cards are also issued for contractors and contain a person’s name, his or her contact within the company and the expiration date of the contract.

A duplicate card of a different color is issued for a contractor’s dashboard to use as a parking pass. “This way we can tell who’s coming in our gates,” said Crawford. Temporary employees who require card access also receive a reusable provisional badge, tracked with an internal numbering system.

Since 9/11, Alticor has added card access readers in the lobbies of its buildings, not just at exterior doors

Since 9/11, Alticor has added card access readers in the lobbies of its buildings, not just at exterior doors. Crawford admits, however, that Alticor’s biggest threats are probably not from terrorists, but rather from terminated employees who return with a “lost” ID badge. In the past, such cards were difficult for security personnel to visually identify as no longer valid. Now, lobby card access readers can identify cards that were voided previously, thus preventing security breaches.

Secure Access Control Across Multiple Locations

“We are just trying to make things a little tighter,” Crawford said. Today, Alticor provides secure access control in a variety of locations. The most important facility, where it all began in 1993, is the three-story research and development building, which houses 600 employees.

“This is what started us down the card access road,” said Crawford, “along with the data center.” Now, there is a second research and development building, a back-up data center, and a large warehouse that houses catalog products and the Quixtar corporate offices. The entire facility is access controlled at the gate and perimeter doors. In addition, telephone switch rooms are all access controlled, as is an aviation department at the Gerald R. Ford International airport. This three-building complex is controlled at its perimeter, as well as at its interior doors.

Crawford is proud of the security advancements made by Alticor. “We benchmark against other companies, comparing technology and price, and thus are able to justify any new requests,” he said. “Planning ahead is the biggest challenge. It can cost a company big money if its ducks aren’t in a row.”

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

How Have Security Solutions Failed Our Schools?
How Have Security Solutions Failed Our Schools?

School shootings are a high-profile reminder of the need for the highest levels of security at our schools and education facilities. Increasingly, a remedy to boost the security at schools is to use more technology. However, no technology is a panacea, and ongoing violence and other threats at our schools suggest some level of failure. We asked this week’s Expert Panel Roundtable: How have security solutions failed our schools and what is the solution?

Why Visualization Platforms Are Vital For An Effective Security Operation Center (SOC)
Why Visualization Platforms Are Vital For An Effective Security Operation Center (SOC)

Display solutions play a key role in SOCs in providing the screens needed for individuals and teams to visualize and share the multiple data sources needed in an SOC today. Security Operation Center (SOC) Every SOC has multiple sources and inputs, both physical and virtual, all of which provide numerous data points to operators, in order to provide the highest levels of physical and cyber security, including surveillance camera feeds, access control and alarm systems for physical security, as well as dashboards and web apps for cyber security applications. Today’s advancements in technology and computing power not only have increasingly made security systems much more scalable, by adding hundreds, if not thousands, of more data points to an SOC, but the rate at which the data comes in has significantly increased as well. Accurate monitoring and surveillance This has made monitoring and surveillance much more accurate and effective, but also more challenging for operators, as they can’t realistically monitor the hundreds, even thousands of cameras, dashboards, calls, etc. in a reactive manner. Lacking situational awareness is often one of the primary factors in poor decision making In order for operators in SOC’s to be able to mitigate incidents in a less reactive way and take meaningful action, streamlined actionable data is needed. This is what will ensure operators in SOC truly have situational awareness. Situational awareness is a key foundation of effective decision making. In its simplest form, ‘It is knowing what is going on’. Lacking situational awareness is often one of the primary factors in poor decision making and in accidents attributed to human error. Achieving ‘true’ situational awareness Situational awareness isn’t just what has already happened, but what is likely to happen next and to achieve ‘true’ situational awareness, a combination of actionable data and the ability to deliver that information or data to the right people, at the right time. This is where visualization platforms (known as visual networking platforms) that provide both the situational real estate, as well as support for computer vision and AI, can help SOCs achieve true situational awareness Role of computer vision and AI technologies Proactive situational awareness is when the data coming into the SOC is analyzed in real time and then, brought forward to operators who are decision makers and key stakeholders in near real time for actionable visualization. Computer vision is a field of Artificial Intelligence that trains computers to interpret and understand digital images and videos. It is a way to automate tasks that the human visual system can also carry out, the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images. There are numerous potential value adds that computer vision can provide to operation centers of different kinds. Here are some examples: Face Recognition: Face detection algorithms can be applied to filter and identify an individual. Biometric Systems: AI can be applied to biometric descriptions such as fingerprint, iris, and face matching. Surveillance: Computer vision supports IoT cameras used to monitor activities and movements of just about any kind that might be related to security and safety, whether that's on the job safety or physical security. Smart Cities: AI and computer vision can be used to improve mobility through quantitative, objective and automated management of resource use (car parks, roads, public squares, etc.) based on the analysis of CCTV data. Event Recognition: Improve the visualization and the decision-making process of human operators or existing video surveillance solutions, by integrating real-time video data analysis algorithms to understand the content of the filmed scene and to extract the relevant information from it. Monitoring: Responding to specific tasks in terms of continuous monitoring and surveillance in many different application frameworks: improved management of logistics in storage warehouses, counting of people during event gatherings, monitoring of subway stations, coastal areas, etc. Computer Vision applications When considering a Computer Vision application, it’s important to ensure that the rest of the infrastructure in the Operation Center, for example the solution that drives the displays and video walls, will connect and work well with the computer vision application. The best way to do this of course is to use a software-driven approach to displaying information and data, rather than a traditional AV hardware approach, which may present incompatibilities. Software-defined and open technology solutions Software-defined and open technology solutions provide a wider support for any type of application the SOC may need Software-defined and open technology solutions provide a wider support for any type of application the SOC may need, including computer vision. In the modern world, with everything going digital, all security services and applications have become networked, and as such, they belong to IT. AV applications and services have increasingly become an integral part of an organization’s IT infrastructure. Software-defined approach to AV IT teams responsible for data protection are more in favor of a software-defined approach to AV that allow virtualised, open technologies as opposed to traditional hardware-based solutions. Software’s flexibility allows for more efficient refreshment cycles, expansions and upgrades. The rise of AV-over-IP technologies have enabled IT teams in SOC’s to effectively integrate AV solutions into their existing stack, greatly reducing overhead costs, when it comes to technology investments, staff training, maintenance, and even physical infrastructure. AV-over-IP software platforms Moreover, with AV-over-IP, software-defined AV platforms, IT teams can more easily integrate AI and Computer Vision applications within the SOC, and have better control of the data coming in, while achieving true situational awareness. Situational awareness is all about actionable data delivered to the right people, at the right time, in order to address security incidents and challenges. Situational awareness is all about actionable data delivered to the right people Often, the people who need to know about security risks or breaches are not physically present in the operation centers, so having the data and information locked up within the four walls of the SOC does not provide true situational awareness. hyper-scalable visual platforms Instead there is a need to be able to deliver the video stream, the dashboard of the data and information to any screen anywhere, at any time — including desktops, tablets phones — for the right people to see, whether that is an executive in a different office or working from home, or security guards walking the halls or streets. New technologies are continuing to extend the reach and the benefits of security operation centers. However, interoperability plays a key role in bringing together AI, machine learning and computer vision technologies, in order to ensure data is turned into actionable data, which is delivered to the right people to provide ‘true’ situational awareness. Software-defined, AV-over-IP platforms are the perfect medium to facilitate this for any organizations with physical and cyber security needs.

Securing Mobile Vehicles: The Cloud and Solving Transportation Industry Challenges
Securing Mobile Vehicles: The Cloud and Solving Transportation Industry Challenges

Securing Intelligent Transportation Systems (ITS) in the transportation industry is multi-faceted for a multitude of reasons. Pressures build for transit industry players to modernise their security systems, while also mitigating the vulnerabilities, risks, and growth-restrictions associated with proprietary as well as integrated solutions. There are the usual physical security obstacles when it comes to increasingly integrated solutions and retrofitting updated technologies into legacy systems. Starting with edge devices like cameras and intelligent sensors acquiring video, analytics and beyond, these edge devices are now found in almost all public transportation like buses, trains, subways, airplanes, cruise lines, and so much more. You can even find them in the world’s last manually operated cable car systems in San Francisco. The next layer to consider is the infrastructure and networks that support these edge devices and connect them to centralized monitoring stations or a VMS. Without this layer, all efforts at the edge or stations are in vain as you lose the connection between the two. And the final layer to consider when building a comprehensive transit solution is the software, recording devices, or viewing stations themselves that capture and report the video. The challenge of mobility However, the transportation industry in particular has a very unique challenge that many others do not – mobility. As other industries become more connected and integrated, they don’t usually have to consider going in and out or bouncing between networks as edge devices physically move. Obviously in the nature of transportation, this is key. Have you ever had a bad experience with your cellular, broadband or Wi-Fi at your home or office? You are not alone. The transportation industry in particular has a very unique challenge that many others do not – mobility Can you trust these same environments to record your surveillance video to the Cloud without losing any frames, non-stop 24 hours a day, 7 days a week, 365 days a year? To add to the complexity – how do you not only provide a reliable and secure solution when it’s mobile, traveling at varying speeds, and can be in/out of coverage using various wireless technologies? Waiting to upload video from a transport vehicle when it comes into port, the station, or any centralized location is a reactive approach that simply will not do any longer. Transit operations require a more proactive approach today and the ability to constantly know what is going on at any given time on their mobile vehicles, and escalate that information to headquarters, authorities, or law enforcement if needed; which can only occur with real-time monitoring. This is the ultimate question when it comes to collecting, analyzing, and sharing data from mobile vehicles – how to get the video from public transportation vehicles alike to headquarters in real time! Managing video data In order to answer this question, let’s get back to basics. The management and nature of video data differs greatly from conventional (IT) data. Not only is video conducted of large frames, but there are specific and important relationships among the frames and the timing between them. This relationship can easily get lost in translation if not handled properly. This is why it’s critical to consider the proper way to transmit large frames while under unstable or variable networks. The Internet and its protocols were designed more than two decades ago and purposed for conventional data. Although the Internet itself has not changed, today’s network environments run a lot faster, expand to further ranges, and support a variety of different types of data. Because the internet is more reliable and affordable than in the past some might think it can handle anything. However, it is good for data, but not for video. This combination makes it the perfect time to convert video recording to the Cloud! Video transmission protocol One of the main issues with today’s technology is the degradation of video quality when transmitting video over the Internet. ITS are in dire need for reliable transmission of real-time video recording. To address this need a radical, yet proven, video transmission protocol has recently been introduced to the market. It uses AI technology and to adapt to different environments in order to always deliver high quality, complete video frames. This protocol, when equipped with encryption and authentication, enables video to be transmitted reliably and securely over the Internet in a cloud environment. One of the main issues with today’s technology is the degradation of video quality when transmitting video over the Internet Finally, transportation industry has a video recording Cloud solution that is designed for (massive) video that can handle networks that might be experiencing high error rate. Such a protocol will not only answer the current challenges of the transportation industry, but also make the previously risky Cloud environment safe for even the most reserved environments and entities. With revolutionary transmission protocols, the time is now to consider adopting private Cloud for your transportation operations.