Zigbee is a familiar name in the smart home arena, and the Zigbee Alliance is expanding its technology approach to address the challenges of the Internet of Things.

As the Internet of Things (IoT) has evolved, the need has become obvious for stronger unity among brands and ecosystems to enable products within smart environments to work together more easily. Working to serve that need is the Zigbee Alliance, which seeks to promote collaboration in the Internet of Things by creating, evolving, and promoting universal open standards that enable all objects to connect and interact.

Shifting the Smart home market

Their IoT effort took off when Amazon, Apple, Google and the Zigbee Alliance announced an industry working group in December 2019 to take the ‘best of market’ technologies from smart home standards, portfolios and ecosystems and to develop a ‘super spec’ that will be open, inclusive and a significant industry shift in the smart home market.

Zigbee Alliance has been for a while now working on openness and interoperability"

Zigbee Alliance has been for a while now working on openness and interoperability, which has led us to the Project Connected Home over IP (CHIP), which is looking to unify the environment, under one technology, one certification program and one logo,” says Chris LaPré, Zigbee Alliance’s IoT Solutions Architect. “It really does fuel IoT possibilities, whether in security or any other sectors.” Project CHIP is a royalty-free connectivity standard that unifies brands and ecosystems into a single smart home automation system that operates any other technology based on Internet Protocol (IP).

Simplifying product development

The intent is to simplify product development for device manufacturers, broaden consumer choice, and to ensure easy discoverability, deployment and engagement to fuel connected living. “We have noticed that, as the IoT has evolved, there is a stronger need for unity, which is why we are developing Project Connected Home over IP,” says Jon Harros, Zigbee Alliance’s Director of Certification and Testing Programs.

It fits with the Zigbee Alliance’s goal to unify systems, and to focus on everyone using the same application at the top. It unifies that environment, whether you are integrating your system with Amazon Echo devices or connecting to Google Home.” Participating in development of Project CHIP are 125 companies of various types from around the world working together with more than 1,100 of their experts serving across sub-committees to formulate specifications and fine-tune the project.

Home system technologies

The original Zigbee protocol is used for many applications around the world, including smart homes

Although the technology is being developed for the home market, the specifications have been formulated with an eye toward expanding into the commercial market in the future. Development of open, interoperable systems provides greater freedom for consumers to choose among the many technology choices on the market, without being tied to a single brand or ecosystem.

Zigbee Alliance certifications and memberships span the globe, with roughly a third in Europe, a third in North America and a third in Asia. Involvement in Europe is slightly higher than the other regions. Alliance members represent manufacturing sites all over the world. Project CHIP is a newer initiative of the Zigbee Alliance, which previously developed Zigbee Pro to enable home system technologies to operate using IEEE 802.15.4 wireless signals on the 2.4GHz radio band over a self-healing true mesh network. The original Zigbee protocol is used for many applications around the world, including smart homes.

Certification transfer program

Among the strengths of the Zigbee Alliance are years of experience certifying products, which includes testing them and confirming that they comply with the promoted specifications and functionality. The specifications are open standards that are developed in cooperation with all the companies that are Zigbee Alliance members.

Another route is the certification transfer program, in which a company chooses a certified white-label product, becomes a member of the Alliance, and then rebrands the product while retaining the certification. “It helps them get products on the market quickly while they build their own knowledge base,” says Harros. “All our work is focused on standardizing the behavior and functionality of products and making sure everyone is following the same standard to get interoperability,” says Harros. “Members all contribute to the standards.”

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

Larry Anderson Editor, SecurityInformed.com & SourceSecurity.com

An experienced journalist and long-time presence in the US security industry, Larry is SecurityInformed.com's eyes and ears in the fast-changing security marketplace, attending industry and corporate events, interviewing security leaders and contributing original editorial content to the site. He leads SecurityInformed's team of dedicated editorial and content professionals, guiding the "editorial roadmap" to ensure the site provides the most relevant content for security professionals.

In case you missed it

How Can Remote or Internet-Based Training Benefit Security?
How Can Remote or Internet-Based Training Benefit Security?

Internet-based training has long provided a less-expensive alternative to in-person classroom time. There are even universities that provide most or all of their instruction online. However, the COVID-19 pandemic has expanded acceptance even more and increased usage of internet-based meeting and learning tools. We asked this week’s Expert Panel Roundtable: How can remote or Internet-based training benefit the physical security market?

How is AI Changing the Security Market?
How is AI Changing the Security Market?

Artificial intelligence is more than just the latest buzzword in the security marketplace. In some cases, smarter computer technologies like AI and machine learning (ML) are helping to transform how security operates. AI is also expanding the industry’s use cases, sometimes even beyond the historic province of the security realm. It turns out that AI is also a timely tool in the middle of a global pandemic. We asked this week’s Expert Panel Roundtable: How is artificial intelligence (AI) changing the security market?

Moving to Sophisticated Electric Locking
Moving to Sophisticated Electric Locking

In part one of this feature, we introduced the shotbolt – a solenoid actuator – as the workhorse at the heart of most straightforward electric locking systems. Shotbolts remain at the core of most sophisticated electric locking solutions as well. But they are supplemented by materials and technologies that provide characteristics suited to specialist security applications. Here we look at some more demanding electric locking applications and contemporary solutions. Preventing forced entry Where the end of the shotbolt is accessible, the electric holding force can be overcome by physical force. That’s why anti-jacking technology is now a frequent feature of contemporary electric solenoid lock actuators. Anti-jacking, dead-locking or ‘bloc’ technology (the latter patented by MSL) is inherent to the way the locking assembly is designed to suit the requirements of the end application. The patented bloc anti-jacking system is highly effective and incorporated into many MSL shotbolts deployed in electric locking applications. The bloc technology uses a ring of steel balls in a shaped internal housing to physically jam the actuated bolt in place. A range of marine locks is widely used on Superyachts for rapid lockdown security from the helm Real life applications for MSL anti-jacking and bloc-equipped shotbolts include installation in the back of supermarket trucks to secure the roller shutter. Once locked from the cab, or remotely using radio technology, these shutters cannot be forced open by anyone with ‘undesirable intentions’ armed with a jemmy. A range of marine locks is widely used on Superyachts for rapid lockdown security from the helm. While anti-jacking features are an option on these shotbolts, consideration was given to the construction materials to provide durability in saltwater environments. Marine locks use corrosion-proof stainless steel, which is also highly polished to be aesthetically pleasing to suit the prestigious nature of the vessel while hiding the innovative technology that prevents the lock being forced open by intruders who may board the craft. Rotary and proportional solenoids sound unlikely but are now common A less obvious example of integrated technology to prevent forced override is a floor lock. This lock assembly is mounted beneath the floor with round-top stainless-steel bolts that project upwards when actuated. They are designed to lock all-glass doors and are arguably the only discreet and attractive way to lock glass doors securely. In a prestigious installation at a historic entranceway in Edinburgh University, the floor locks are remotely controlled from an emergency button behind the reception desk. They act on twin sets of glass doors to quickly allow the doors to close and then lock them closed with another set of subfloor locks. No amount of stamping on or hitting the 15mm protruding bolt pin will cause it to yield, thus preventing intruders from entering. Or leaving! Explosion proofing In many environments, electric locking technology must be ATEX certified to mitigate any risk of explosion. For example, remote electric locking is used widely on oil and gas rigs for stringent access control, general security and for emergency shutter release in the event of fire. It’s also used across many industrial sectors where explosion risks exist, including flour milling, In many environments, electric locking technology must be ATEX certified to mitigate any risk of explosionpowder producers, paint manufacture, etc. This adds a new dimension to the actuator design, demanding not only intrinsically safe electrical circuits and solenoid coils, but the careful selection of metals and materials to eliminate the chance of sparks arising from moving parts. Resilience under pressure The technology boundaries of solenoids are always being pushed. Rotary and proportional solenoids sound unlikely but are now common. More recently, while not directly related to security in the traditional sense, proportional solenoid valves for accurately controlling the flow of hydrogen and gases now exist. Magnet Schultz has an extensive and somewhat innovative new range of hydrogen valves proving popular in the energy and automotive sectors (Fig. 2-6). There’s a different kind of security risk at play here when dealing with hydrogen under pressures of up to 1050 bar. Bio security Less an issue for the complexity of locking technology but more an imperative for the effectiveness of an electric lock is the frequent use of shotbolts in the bio research sector. Remote electric locking is commonplace in many bioreactor applications. Cultures being grown inside bioreactors can be undesirable agents, making 100% dependable locking of bioreactor lids essential to prevent untimely access or the unwanted escape of organisms. Again, that has proven to be topical in the current climate of recurring coronavirus outbreaks around the world. More than meets the eye In part one, I started by headlining that there’s more to electric lock actuation in all manner of security applications than meets the eye and pointed out that while electric locking is among the most ubiquitous examples of everyday security, the complexity often involved and the advanced technologies deployed typically go unnoticed.Integrating the simplest linear actuator into a complex system is rarely simple For end users, that’s a very good thing. But for electro-mechanical engineers designing a system, it can present a challenge. Our goal at Magnet Schultz is to provide a clearer insight into today’s electric locking industry sector and the wide range of locking solutions available – from the straightforward to the specialized and sophisticated. Integrating the simplest linear actuator into a complex system is rarely simple. There’s no substitute for expertise and experience, and that’s what MSL offers as an outsource service to designers. One benefit afforded to those of us in the actuator industry with a very narrow but intense focus is not just understanding the advantages and limitations of solenoid technology, but the visibility of, and participation in, emerging developments in the science of electric locking. Knowing what’s achievable is invaluable in every project development phase.