Access control readers - Expert commentary

Wireless Technology Is Transforming Motion Detection
Wireless Technology Is Transforming Motion Detection

Motion detection is a key feature of security systems in residential and commercial environments. Until recently, systems have relied heavily on closed circuit television (CCTV) and passive infrared (PIR) sensors, which both require significant investment and infrastructure to install and monitor. Developments in wireless technology are increasing home security possibilities. Few years ago, these developments led Cognitive Systems to discover that the wireless signals surrounding oneself can be used to detect motion. Known in the wireless industry as WiFi sensing, this technology brings many benefits that other motion detection solutions have not been able to provide. The working of WiFi sensing At Cognitive Systems, the company has used WiFi sensing technology to develop a motion detection solution called WiFi Motion™, which measures and interprets disruptions in RF signals transmitted between WiFi devices. When movement occurs in a space, ripples in the wireless signals are created. WiFi Motion interprets these ripples and determines if an action, such as sending a notification, is needed. Enabling this functionality in a space is incredibly simple. With a software upgrade to only one’s WiFi access point (or mesh router), motion sensing capabilities are layered into one’s WiFi network. Existing connected WiFi devices then become motion detectors without detracting from their original functions or slowing down the network. Using artificial intelligence (AI), WiFi Motion establishes a benchmark of the motionless environment and learns movement patterns over time, which could be used to predict trends. This allows unusual movement patterns to be detected with greater accuracy while decreasing the potential for costly false alerts. WiFi Motion requires no line-of-sight or installation WiFi sensing and other home monitoring solutions All of these capabilities are made possible by WiFi sensing and together create a motion detection system that provides unparalleled accuracy, coverage, privacy and affordability compared to other solutions on the market. PIR integration is far more complex and imposes electronic and physical design restrictions compared to WiFi sensing. In terms of placement, PIR systems are difficult to install, requiring line-of-sight and a device in every room for localization. WiFi Motion requires no line-of-sight or installation and is also a scalable solution compared to PIR. Much like cameras, PIRs can only cover so much space, but WiFi Motion can cover the entire home and even detect motion in the dark and through walls, without adding additional devices to the home. WiFi Motion detects less distinguishing context than cameras and microphones, but more context than regular PIR sensors for the perfect balance of privacy and highly accurate motion detection. Privacy solution While cameras have been the security solution for years, WiFi Motion offers a more affordable solution that can rival the privacy and coverage capabilities of even the most high-end cameras. With such a wide coverage area, one might think that WiFi sensing infringes on privacy, but actually, the opposite is true. With WiFi Motion, the contextual information collected cannot be used to identify a specific individual, unlike cameras which can clearly identify a person’s face or microphones, which can identify a person’s voice. It is different from other smart home security options that use cameras and microphones because it only senses motion using WiFi signals - it doesn’t “see” or “listen” like a camera or microphone would. This provides opportunities for added security in spaces where privacy might be a concern and installing a camera may not be a comfortable solution, such as bathrooms and bedrooms. The data collected is also anonymized and highly encrypted according to stringent industry privacy standards. Existing connected WiFi devices then become motion detectors Additional WiFi sensing applications Since WiFi sensing technology requires no additional hardware or subscription fees, it is much more affordable than other motion detection solutions. It can be used as a standalone solution, or it can be easily layered into more complex systems. This ease of integration, scalability and relatively low cost brings a lot of potential for various applications. Motion detection can trigger other smart devices in the network to turn lights on or off In eldercare, for example, WiFi sensing can be used to help seniors live comfortably in their homes for as long as possible. With the increasing aging population and high costs associated with care homes, the market for this application is considerable. Caregivers can use an app to monitor movement in their loved one’s home and be alerted about unusual movement patterns that could indicate a concern. For smart homes and other environments that have a network of smart devices, the artificial intelligence (AI) component of the technology allows for improvements to automated features. Motion detection can trigger other smart devices in the network to turn lights on or off or make adjustments to the temperature in a room. Security for the commercial sector For office buildings and other commercial properties, it is easy to see how all of these features could be scaled up to offer a highly accurate and cost-effective motion sensing and smart device automation solution. Cognitive Systems is closely involved with the development of WiFi sensing technology, working with various industry groups to establish standards and help it reach its full potential. WiFi Motion is merely the tip of the iceberg in terms of motion sensing possibilities, but its applications in the world of security are undeniably compelling. It is an exciting time for the wireless industry, as one works with stakeholders in the security space to explore everything this technology can do.

The Growth Of The Mobile Access Card Market In 2020
The Growth Of The Mobile Access Card Market In 2020

The emergence of smartphones using iOS and Android is rapidly changing the landscape of the IT industry around the world. Several industries, such as digital cameras, car navigation, MP3, and PNP, have been replaced by equivalent or even better performance using smartphones. Smartphones provide increasing portability by integrating the functions of various devices into a single unit which allows them to connect to platforms with network-based services and offer new services and conveniences that have never been experienced before. These changes have expanded into the access control market. Although not yet widespread, ‘Mobile access cards’ is one of the terminologies that everyone has been talking about. RF cards used for access security are being integrated into smartphones just as digital cameras and MP3s were in the past. While people might forget their access cards at home in the morning, they seldom forget their smartphones. Using smartphones for access control increases entry access reliability and convenience. Mobile/smartphone access control A key aspect of mobile credential is that it makes it possible to issue or reclaim cards without face-to-face interaction As in other markets, the combination of smartphones and access cards is creating a new value that goes beyond the simple convenience of integration enhancing the ability to prevent unauthorized authentication and entrance. People sometimes lend their access cards to others, but it is far less likely they might lend their smartphone with all their financial information and personal information – to another person. This overcomes an important fundamental weakness of RF cards. Another valuable aspect of mobile credential is that it makes it possible to issue or reclaim cards without face-to-face interaction. Under existing access security systems, cards must be issued in person. Since card issuance implies access rights, the recipient’s identification must be confirmed first before enabling the card and once the card has been issued, it cannot be retracted without another separate face-to-face interaction. Mobile access cards In contrast, mobile access cards are designed to transfer authority safely to the user's smartphone based on TLS. In this way, credentials can be safely managed with authenticated users without face-to-face interaction. Mobile cards can be used not only at the sites with a large number of visitors or when managing access for an unspecified number of visitors, but also at the places like shared offices, kitchens and gyms, currently used as smart access control systems in shared economy markets. The market share of mobile access cards today is low even though the capability can offer real benefits to users and markets. While the access control market itself is slow-moving, there are also practical problems that limit the adoption of new technologies like mobile access cards. Use of Bluetooth Low Energy technology While NFC could be an important technology for mobile credential that is available today on virtually all smartphones, differences in implementation and data handling processes from various vendors prevents universal deployment of a single solution to all devices currently on the market. Accordingly, Bluetooth Low Energy (BLE) has been considered as an alternative to NFC. Bluetooth is a technology that has been applied to smartphones for a long time, and its usage and interface are unified, so there are no compatibility problems. However, speed becomes the main problem. The authentication speed of BLE mobile access card products provided by major companies is slower than that of existing cards. Enhancing credential authentication speed Authentication speed is being continuously improved using BLE's GAP layer and GATT layers The second problem is that mobile access cards must be accompanied by a supply of compatible card readers. In order to use mobile access cards, readers need to be updated but this is not a simple task in the access control market. For 13.56 MHz smart cards (which were designed to replace 125 kHz cards), it has taken 20 years since the standard was established but only about half of all 25 kHz cards have been replaced so far. Legacy compatibility and the need for equivalent performance, even with additional benefits, will drive adoption timing for the Access Control market. While BLE technology helps resolve the compatibility problem of mobile access cards, it can identify some breakthroughs that can solve the speed problem. Authentication speed is being continuously improved using BLE's GAP layer and GATT layers, and new products with these improvements are now released in the market. Making use of key improvements allows Suprema's mobile access card to exhibit an authentication speed of less than 0.5 seconds providing equivalent performance to that of card-based authentication. AirFob Patch MOCA System's AirFob Patch addresses the need for technological improvements in the access control market in a direct, cost effective, and reliable way – by offering the ability to add high-performance BLE to existing card readers – enabling them to read BLE smartphone data by applying a small adhesive patch approximately the size of a coin. This innovative breakthrough applies energy harvesting technology, generating energy from the RF field emitted by the existing RF reader – then converting the data received via BLE back into RF – and delivering it to the reader. By adding the ability to use BLE on virtually any existing RF card reading device, MOCA allows greater ability for partners and end users to deploy a technologically-stable, high performance access control mobile credential solution to their employees, using devices they already own and are familiar with. Adding MOCA AirFob Patch eliminates the need to buy and install updated readers simply to take advantage of mobile credential, lowering costs and risks, and increasing employee confidence and convenience. Growth forecast of mobile access card market in 2020 In 2020, forecasts show that the mobile access card market will grow far more rapidly Several companies have entered the mobile access card market, but they have not set up a meaningful product solution stream until 2019. In 2020, forecasts show that the mobile access card market will grow far more rapidly. Reviewing new entries into the market allows identification of the latest products that provide improving solutions to compatibility and speed problems. MOCA AirFob Patch addresses development plans in process today that overcome the legacy installed base of card readers – allowing rapid creation of an environment that can make immediate use of BLE mobile access cards. Integrated mobile digital ID With proven usability and within suitable environments, mobile access cards will also begin to make inroads into other markets, not just the access control market. In the sharing economy market, which seeks access management without face-to-face interaction, the integrated mobile digital ID led by the 'DID Alliance' will serve as a technical tool that can be used in access authentication – forging increasing links between the access control and digital ID markets.

Entrance Control Vs Access Control: Similarities And Differences
Entrance Control Vs Access Control: Similarities And Differences

Entrance control and access control - of the physical kind - are common terms in the security industry which are often used interchangeably, but should they be? Having worked both sides of the fence, with previous roles at TDSi and HID and now the Major Accounts and Marketing Manager at Integrated Design Limited, Tony Smith highlights the subtle but important differences between these two terms and the systems they refer to, outlining how they should work together to achieve optimal security. Access control is a system which provides discriminating authentication Access control provides a discriminating authentication process and comprises the software or hardware that defines the criteria for acceptance or denial Used to describe a system which performs identification of users and authentication of their credentials (deciding whether or not the bearer of those credentials is permitted admission) access control is an incredibly broad term. Access control provides a discriminating authentication process and comprises the software or hardware that defines the criteria for acceptance or denial of an individual to a restricted area. Entrance control – such as security turnstiles - takes the output of that validation and has the capability to see whether that criteria is being adhered to, either granting or denying access as appropriate. Entrance control is the hardware responsible for keeping people honest If access control verifies authorized personnel using their credentials – their face, fingerprints, PIN number, fob, key card etc – and decides whether or not they are permitted access, entrance control is the hardware which enforces that decision by making users present their credentials in the correct way, either opening to allow pedestrian access or remaining closed to bar entry and potentially raising an alarm. For example, a card reader acts as an access control device, recognizing the card holder as having the correct permissions and saying ‘yes, this person can pass’. But, it’s the entrance control system – a turnstile, for example – which actually physically allows or denies access. Physical access and video surveillance Some entrance control systems don’t feature a physical barrier, however. Fastlane Optical turnstiles will not physically stop an unauthorized person from passing through, and instead alarm when someone fails to present valid credentials, alerting security staff that a breach has occurred. These kinds of turnstiles are suited to environments which just need to delineate between the public and secure side of an entrance, with less need to physically prevent unauthorized users from entering. State of the art access control integrations have been installed for award-winning complex, The Bower It’s also possible to capture video footage of any incidents, allowing security personnel to identify users failing to abide by the access control system’s rules, using It’s also possible to capture video footage of incidents, allowing security personnel to identify users failing to abide by access control system rules the footage to decide on the level of response required. The breach could have been the result of a member of staff being in a hurry and failing to show their card before passing through, in which case they can be reminded about the security protocol. Or, it could be an unidentified person who needs to be escorted from the premises. Entrance control and access control working together For optimum security, access control and entrance control should work together, with the entrance control system enhancing the use of the access control system, making it more efficient and better value for money. The two can’t effectively operate without each other. Security turnstiles, for example, require something to tell them that someone is about to enter – the access control system does this – and, the access control system needs a method of stopping people when they don’t badge in correctly. The two systems are complementary.

Latest Inner Range (Europe) Ltd news

Inner Range Announces Integration Of Its Integriti Intelligent Security System With 2N’s IP-Based Intercoms
Inner Range Announces Integration Of Its Integriti Intelligent Security System With 2N’s IP-Based Intercoms

Access control and security systems manufacturer, Inner Range has announced a new integration option for customers with specialist IP-based intercom systems from 2N. Integriti  Inner Range’s intelligent integrated access control and security system, Integriti can now integrate with 2N’s IP-based intercom systems. 2N products allow secure and comfortable communication across even the most complex commercial sites, with multiple communication points, such as entrances, car parks, reception, lifts and meeting rooms. Integration with 2N’s IP-based intercoms Like Inner Range, 2N designs and manufactures its own products, taking the time and many rounds of testing" Tim Northwood, General Manager at Inner Range, said, “Like Inner Range, 2N designs and manufactures its own products, taking the time and many rounds of testing to get things right, before releasing systems to the market. As a result, we are confident 2N intercoms will be a reliable and useful addition for our customers in the UK and across the world.” Michal Kratochvil, Chief Executive Officer (CEO) at 2N, said, “Inner Range and 2N are natural partners, and not just because both companies have such extensive experience in security access control systems and a global footprint. We also share the same commitment to innovation through ongoing investment in R&D, and have built our companies through the same focus on customers.” Strategic collaboration He adds, “We see alliances like this as vital to maintaining 2N's status as an innovator in the residential and commercial markets. Together, I am confident that Inner Range and 2N can meet the growing demand we are seeing across the globe for smarter access control systems.” 2N offers intercom systems for residential and commercial markets with products that are Bluetooth, smartphone and tablet-enabled. The company developed the world’s first IP intercom in 2008 and the first LTE/4G intercom, ten years later. Intelligent access control and security system 2N now covers the full range of solutions in the field of security, access control systems and communication within buildings. Integriti is Inner Range’s award-winning intelligent access control and security system that can integrate with a multitude of third-party products to create a sophisticated and highly secure access and security solution, while also providing trouble-free access for site users.

EU’s Tallest Building Complete With Forge Visitor Management And Inner Range Access Control
EU’s Tallest Building Complete With Forge Visitor Management And Inner Range Access Control

The tallest building in the European Union, Varso Place in Warsaw, Poland, is now live with Forge Bluepoint visitor management and Inner Range intelligent access control. Forge Bluepoint, Forge’s cloud-based visitor management solution was chosen by Varso Place’s developer HB Reavis after the firm researched the market and found it could provide a great experience for visitors as it was multi-tenant ready, multi-lingual and it could integrate seamlessly with Inner Range’s sophisticated Integriti system. Jakub Kacer, Security Manager at HB Reavis said: “When all tenants use Forge Bluepoint, our receptionists will have less administration work, we will have real-time visitor statistics and it’s a modern attractive visitor system.” Access control system Forge Bluepoint will allow the main reception teams at each building to focus on the experience at Varso Place. Visitors will be invited by tenants via email which will provide them with a unique QR code. Visitors will use this QR code to check-in at the Forge Bluepoint kiosk or with the reception team. The integration with Inner Range’s Integriti access control system allows visitors to also use the QR code to call the lifts, supplied by Schindler, to access the floor of the tenant company and nowhere else. Paul Speariett, Co-founder and Director at Forge, said: “Working closely with the onsite security and building management team at Varso Place, in Warsaw, we were able to implement Forge Bluepoint during the COVID-19 crisis from the UK. It wasn’t ideal, but we overcame the challenges and are proud to see Forge Bluepoint working to give visitors a great experience.” Visitor management supplier Forge is currently rolling out Forge Bluepoint at Nivy Tower in Bratislava and the Agora Tower in Budapest Tim Northwood, General Manager at Inner Range, said: “Our flagship intelligent integrated access control system Integriti provides robust security and sophisticated controls around access to these new buildings. But it also allows trouble-free access for users, including the ability to invite and manage visitors easily via Forge Bluepoint.” With 1.5 million sq ft of leasable space, companies including Cambridge Innovation Center, Bank Gospodarstwa Krajowego (a state-owned development bank in Poland) and the Polish offices of Nvidia, Yves Rocher and Workday will call Varso Place home and use Forge Bluepoint to invite visitors easily, safely and securely. Forge, as the chosen visitor management supplier for HB Reavis globally, is currently rolling out Forge Bluepoint at Nivy Tower in Bratislava and the Agora Tower in Budapest. Access and security solution Inner Range has been a world leader in the design and manufacture of intelligent security solutions since it was established in 1988. More than 150,000 Inner Range systems have been installed in over 30 countries. Customers include hospitals and high-security units, colleges, distribution centers and pharmaceutical companies, government and critical national infrastructure. It’s Integriti product is an award-winning intelligent access control and security system that can integrate with a multitude of third-party products to create a sophisticated and highly secure access and security solution while also providing trouble-free access for site users. Varso Place is Warsaw’s largest mixed-use development and consists of Varso 1, Varso 2 designed by HRA Architekci, and Varso Tower, the tallest building in the European Union at 310m high which was designed by celebrated architects, Foster + Partners.

Access Control Systems: Ethernet Vs Proprietary Bus Network Cabling
Access Control Systems: Ethernet Vs Proprietary Bus Network Cabling

When designing a security system for a site, the question of how it should be interconnected is often one of the first you need to answer. Should you choose a system that has its own proprietary bus network, which might require twisted pair cabling, or perhaps one based on an ethernet backbone? Both types of network have their advantages and disadvantages as discussed below. Ethernet connectivity Some security systems are based on a number of modules, and each module is connected to its own ethernet connection. One big advantage of a system like this is that in many cases it can be much more convenient, allowing the installer to utilize existing network cabling and other infrastructure, rather than needing to install new cabling. On the other hand, if a security system relies entirely on networking infrastructure controlled by others – typically the IT department, then the stability and reliability of the security system is dependent on that network being available when your system needs it. The stability and reliability of the security system is dependent on that network being available Another potential disadvantage is that certain areas of the premises may not be equipped with a nearby network outlet, and if the network in question is not managed by you, it might be necessary to request the IT department add an outlet for you to use. Proprietary bus connectivity A system with its own proprietary bus network can also have advantages. Perhaps the first and most important difference is that because the network cabling is installed specifically for the security system, the designer has the luxury of being able to decide exactly where the wiring should be placed and terminated. Another advantage is that the cabling would only be used by the security system, so the installation company can be sure the network will always be available, and there would be very little chance part of it could be accidentally unplugged. Another potential advantage is that some systems are able to run bus cabling of distances well over 1,000 metres, whereas individual ethernet connections are typically limited to 100 metres or less. Another consideration, which applies particularly to intruder and holdup alarm systems, is that communications between elements of the security system should not be prevented by other factors, such as a power failure. Obviously, if a part of such a network is formed by ethernet infrastructure, such as network switches and / or media converters, then that infrastructure needs to be battery backed, and the power supply must be monitored. In some cases, the equipment must be able to withstand a power failure of 24 or even 60 hours. Such long standby times are unusual in IT infrastructure, but are quite common in the case of security systems. The equipment must be able to withstand a power failure of 24 or even 60 hours How this all fits together When selecting a system, it is usually most helpful to have a flexible system that can support a number of different deployment options. This is especially true if the system in question can support a combination of different interconnection types. For example, a single system that can contain a variety of interconnections can then be deployed in a very wide variety of systems where existing infrastructure may be used to aid in the design and deployment: Fiber connections – Many modern sites are pre-cabled with existing fiber connections which can be used to form a dedicated interconnection between system components which can be of the order of kilometres apart. Ethernet connectivity – With the increasing ubiquity of networking within premises, some elements of a security system can be deployed using the existing infrastructure. Repeater - For very large or densely packed systems, a device that can be used as a form of “repeater” can be extremely useful to permit very long interconnect cabling distances. Systems can be formed by utilising a fusion of all of the above connectivity methods Some security systems can be set up to enable multiple discrete access control modules to be deployed, connected to an existing ethernet network, and treated as a single ‘system’ by the management software, while retaining full offline functionality in the event the network becomes unavailable. Further, some systems can be formed by utilising a fusion of all of the above connectivity methods. In practice, of course some applications would suit a deployment that relied solely on ethernet connectivity. Some other applications, especially systems or parts of systems that are part of an intruder and/or holdup alarm system, would better suit a deployment using a dedicated proprietary bus network, and other systems would suit a combination of these communications options. Selecting a system that can be deployed in a variety of ways can be enormously helpful in providing the flexibility projects might demand.

Related white papers

5 Reasons To Integrate Mobile Technology Into Your Security Solution

11 Considerations For Embedded System RFID Readers

RFID and Smartphone Readers in Physical Access Control