Machine learning focuses on the development of computer programmes that can teach themselves to grow and change through exposure to new data
The need for security convergence and shared threat intelligence is markedly increasing

“Converged security” has been a buzz phrase for more than a decade, but the industry is just now starting to reap the rewards. Converged security recognizes that truly comprehensive organizational risk management involves the integration of two distinct security functions that have largely been siloed in the past: information security (network operations center or NOC) and physical security (security operations center or SOC). In fact, “siloed” may be a nicer way of saying that these people historically have had no desire or ability to work together.

NOC And SOC Convergence

That situation has been acceptable in the past but the need, and in some cases requirement, for security convergence and shared threat intelligence is markedly increasing and clearly more important today than ever before. The recent slew of successful attacks that all had predictive indicators that were overlooked because of highly segmented data collection and analysis are solemn reminders that the vulnerabilities are real. Organizations are tasked with keeping people and other assets safe, and to do that effectively, they must encourage cooperation between both the NOC and SOC functions, as they are inextricably linked. In the most recent tragedies, there were unlinked predictors on the cyber side that were discovered after the fact. In the past, physical assets merited the most attention in security protection, but today’s organizations are data driven and many of these traditionally physical assets are now information-based.

These two security worlds are markedly different. Security in a NOC often is focused on information like raw network traffic, security and audit logs, and other similarly abstract data that requires some interpretation as to what it could possibly mean. Points of emphasis in a SOC are video camera feeds and recordings, physical identity and access logs, fire safety, and many other important but largely tangible data. In an optimal security environment, the NOC and the SOC rely on each other, so today’s security professionals must be aware of the goals of the “other side.”

Modern threats are linked to
each
other, meaning that
there’s rarely a
physical threat
that didn’t originate
from a
network touchpoint at some

point during planning or
execution

What’s driving (or enabling) convergence on the IT side for many organizations is the ongoing analog-to-IP video conversion that started some time ago and some heavy investments in IT infrastructure (often for other areas of the business), which have led to easier access to sensor connectivity. This, combined with the continuously decreasing cost of network bandwidth and data storage, has removed the last big obstacles to widespread use. Further pressure on the outcomes comes from the intelligence perspective where modern threats are linked to each other, meaning that there’s rarely a physical threat that didn’t originate from a network touchpoint at some point in the planning or execution phase. That reality has led in some cases to the obliteration of walls between NOCs and SOCs, creating a “fusion center” or “SNOC.”

Convergence Challenges

Although necessary, there are some notable challenges to convergence, best served through the integration of people, processes, preferred solutions in the cyber and physical security space, and the analysts’ knowledge base, meaning that security officers, for example, have different training than cyber analysts.

Different “personalities” often are observed within organizations that are tasked with security. The cyber team, for example, might be comprised of millennials who have highly technical skill sets because they grew up in the Internet age (digital natives). Those in physical security, on the other hand, might be comprised of former city/state law enforcement, former military or government service protecting physical assets, who are often more senior and didn’t grow up with technology at their fingertips. As a result, these personalities sometimes don’t “mix” naturally, so extra effort is needed to break down barriers that isolate the roles into separate business units, in completely separate operation centers, or sometimes on opposite sides of the country.

Security in a NOC often is focused on information like raw network traffic, security and audit logs, and other similarly abstract data
Cyber and physical security professionals often have different knowledge, personalities and training that hinder cooperation

Because these operators/analysts come from different backgrounds, have different areas of responsibility, and because their response workflows rarely intersect, a question emerges: Would a typical operator in the SOC think to even call the NOC if the operator saw something suspicious that could relate to the cyber side? Some NOCs are unaware that the SOC even exists, and if they are, they don’t know what the SOC is monitoring. The key to success is cross-training. For greater context and threat identification/mitigation, operators need to be familiar with the physical and logical risk, solutions, and cross-escalations.

The Challenge Of Going Traditional

Even in a converged security environment, traditional security detection systems produce a range of challenges in keeping organizations secure. Among them are:

Weak, independent alert streams: Most threat detection systems today are limited to a single data type – physical or cyber – and often these best-of-breed solutions are niched into a specific use (or division) within the department. For example, a large metropolitan transportation authority might have a physical security team with a dedicated fare evasion department – and, thus, leverage multiple cutting-edge solutions, including some machine learning, in support of a very specific objective rather than looking holistically at how to apply the technology across the organization.

Cost of alarm investigation: Operators are inundated with data and “false alarms” in their day-to-day work. For example, on a large, urban college campus, SOC operators are responding to 911 (blue phones), LPR, unit dispatch, video analytics, and access control. The challenge of data inundation and false alarms cause them to average just over three minutes in issuing the required acknowledgement. In some cases this is actually considered a “good” response time.

In short, false alarms without
context  or relevance and data
inundation require enormous
time and resources from
organizations

In another example, a major metropolitan city‘s police department, operators attempt to proactively keep the public safe and direct response resources by monitoring almost 2,000 cameras online (easily 48,000 hours of recorded footage per day). In an 18-month period, only one time did they actually catch an anomalous event as it happened with a camera operator looking at the monitor at the exact right time. Every other incident had to be found after the fact. In short, false alarms without context or relevance and data inundation require enormous time and resources from organizations and in most cases, are making real-time or even rapid response impossible.

Interpretability of alerts: Even when an alert is issued, the hardest thing to figure out through many systems is (1) why the alert was issued and (2) is there a recommended action/workflow.

Alerting rules start bad but get worse: Considering data inundation and the incidence of false alarms, traditional systems don’t adjust themselves to stop providing alerts that eventually are deemed to not be useful and don’t teach themselves to provide more relevant alerts that merit further investigation. Over time, a system that started with a large volume of alerts and a manageable amount of false alarms eventually becomes a system of mostly false alarms.

A machine learning system will connect to known threat libraries to help classify new anomalies and recommend mitigation steps
The next attack will not look like the last so we need an intelligent system that will identify the unexpected

How Machine Learning Can Help Solve The Challenges

So given the limitations of traditional systems, increasingly machine learning security systems are being used to address the challenges. Machine learning is a facet of artificial intelligence that provides computers with the ability to learn without being explicitly programmed or configured. Machine learning focuses on the development of computer programs that can teach themselves to grow and change through exposure to new data. Giant Gray’s Graydient platform, for example, leverages machine learning in its integration with video, SCADA or cyber technology to reduce false alarms in “teaching itself” what’s normal behavior in a given setting. Machine learning addresses the limitations of traditional systems by:

Reducing the cost of alarm investigation with intelligent prioritization: In a traditional rules-based system, the logic is largely black and white. There is either a violation of a rule or there isn’t. All alerts are treated equally. In an unsupervised machine learning system, the logic to determine the likelihood or “unusualness” of an event can be based on an ever-evolving body of highly detailed knowledge. As a result, it offers the ability to rate the unusualness of any given event. With the ability to dynamically rank alerts, those alerts can be classified based on this unusualness score. 

Machine learning focuses on
the development of computer
programs that can teach
themselves to grow and
change through exposure to
new data

A typical machine learning event ranking in a given period might be: Four alarms requiring acknowledgement, seven worth investigating, and 10 informational-only alerts that don’t create tickets. A perfectly configured traditional rules-based system in the same period would generate 21 equally ranked alerts that all require human interpretation. That said, optimally configured rules are rare and get worse with time, so the expectation might be to expect hundreds of equally ranked alerts in the same period that all need human review.

Context through combining traditionally disconnected alert sources: Machine learning systems leverage a composite sensor, a collection of individual sensors of various types that the system will learn and alarm as a whole based on the relationships between the member sensors. For example: When Object-A exhibits this behavior, Object-B typically exhibits another behavior within a certain time. The system will alert if the expected correlated action doesn’t occur.

External threat-intelligence: A system will connect to known threat libraries to help classify new anomalies and recommend mitigation steps. No one likes to see an “unknown” or “unk” classification, so many of the leading SIEMs have this functionality built in.

Automatic self-improvement: Feedback loops must be guarded and learned. There always will be risk that a human’s input can corrupt a learning system, which could result in undesirable output. This risk is mitigated with continuous learning, where we‘re either reinforcing memories or driving memory decay (forgetting) based on what we see. This approach adapts to changing conditions and can prevent long-term, heavy handed feedback.

Why Machine Learning Is Required In Security

  • There is no baseline training data we can use to create reliable system rules or to train supervised learning systems;
  • We cannot manually keep pace with change, so we have to have a system that continuously adapts, learning the new environment or condition and forgetting the old;
  • Modeling and rules are the most effective they will ever be on the day they’re programmed. The next attack will not look like the last so we need an intelligent system that will identify the unexpected;
  • The most dangerous threats we all face are the ones that have never been seen before. They can’t be predicted, and therefore, we cannot program a rule or build a model for something that we can’t quantify.
Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

Cody Falcon Vice President, Solutions & Services, Giant Gray

In case you missed it

Water Plant Attack Emphasizes Cyber’s Impact On Physical Security
Water Plant Attack Emphasizes Cyber’s Impact On Physical Security

At an Oldsmar, Fla., water treatment facility on Feb. 5, an operator watched a computer screen as someone remotely accessed the system monitoring the water supply and increased the amount of sodium hydroxide from 100 parts per million to 11,100 parts per million. The chemical, also known as lye, is used in small concentrations to control acidity in the water. In larger concentrations, the compound is poisonous – the same corrosive chemical used to eat away at clogged drains. The impact of cybersecurity attacks The incident is the latest example of how cybersecurity attacks can translate into real-world, physical security consequences – even deadly ones.Cybersecurity attacks on small municipal water systems have been a concern among security professionals for years. The computer system was set up to allow remote access only to authorized users. The source of the unauthorized access is unknown. However, the attacker was only in the system for 3 to 5 minutes, and an operator corrected the concentration back to 100 parts per million soon after. It would have taken a day or more for contaminated water to enter the system. In the end, the city’s water supply was not affected. There were other safeguards in place that would have prevented contaminated water from entering the city’s water supply, which serves around 15,000 residents. The remote access used for the attack was disabled pending an investigation by the FBI, Secret Service and Pinellas County Sheriff’s Office. On Feb. 2, a compilation of breached usernames and passwords, known as COMB for “Compilation of Many Breaches,” was leaked online. COMB contains 3.2 billion unique email/password pairs. It was later discovered that the breach included the credentials for the Oldsmar water plant. Water plant attacks feared for years Cybersecurity attacks on small municipal water systems have been a concern among security professionals for years. Florida’s Sen. Marco Rubio tweeted that the attempt to poison the water supply should be treated as a “matter of national security.” “The incident at the Oldsmar water treatment plant is a reminder that our nation’s critical infrastructure is continually at risk; not only from nation-state attackers, but also from malicious actors with unknown motives and goals,” comments Mieng Lim, VP of Product Management at Digital Defense Inc., a provider of vulnerability management and threat assessment solutions.The attack on Oldsmar’s water treatment system shows how critical national infrastructure is increasingly becoming a target for hackers as organizations bring systems online “Our dependency on critical infrastructure – power grids, utilities, water supplies, communications, financial services, emergency services, etc. – on a daily basis emphasizes the need to ensure the systems are defended against any adversary,” Mieng Lim adds. “Proactive security measures are crucial to safeguard critical infrastructure systems when perimeter defenses have been compromised or circumvented. We have to get back to the basics – re-evaluate and rebuild security protections from the ground up.” "This event reinforces the increasing need to authenticate not only users, but the devices and machine identities that are authorized to connect to an organization's network,” adds Chris Hickman, Chief Security Officer at digital identity security vendor Keyfactor. “If your only line of protection is user authentication, it will be compromised. It's not necessarily about who connects to the system, but what that user can access once they're inside. "If the network could have authenticated the validity of the device connecting to the network, the connection would have failed because hackers rarely have possession of authorized devices. This and other cases of hijacked user credentials can be limited or mitigated if devices are issued strong, crypto-derived, unique credentials like a digital certificate. In this case, it looks like the network had trust in the user credential but not in the validity of the device itself. Unfortunately, this kind of scenario is what can happen when zero trust is your end state, not your beginning point." “The attack on Oldsmar’s water treatment system shows how critical national infrastructure is increasingly becoming a target for hackers as organizations bring systems online for the first time as part of digital transformation projects,” says Gareth Williams, Vice President - Secure Communications & Information Systems, Thales UK. “While the move towards greater automation and connected switches and control systems brings unprecedented opportunities, it is not without risk, as anything that is brought online immediately becomes a target to be hacked.” Operational technology to mitigate attacks Williams advises organizations to approach Operational Technology as its own entity and put in place procedures that mitigate against the impact of an attack that could ultimately cost lives. This means understanding what is connected, who has access to it and what else might be at risk should that system be compromised, he says. “Once that is established, they can secure access through protocols like access management and fail-safe systems.”  “The cyberattack against the water supply in Oldsmar should come as a wakeup call,” says Saryu Nayyar, CEO, Gurucul.  “Cybersecurity professionals have been talking about infrastructure vulnerabilities for years, detailing the potential for attacks like this, and this is a near perfect example of what we have been warning about,” she says.  Although this attack was not successful, there is little doubt a skilled attacker could execute a similar infrastructure attack with more destructive results, says Nayyar. Organizations tasked with operating and protecting critical public infrastructure must assume the worst and take more serious measures to protect their environments, she advises. Fortunately, there were backup systems in place in Oldsmar. What could have been a tragedy instead became a cautionary tale. Both physical security and cybersecurity professionals should pay attention.

Expert Roundup: Healthy Buildings, Blockchain, AI, Skilled Workers, And More
Expert Roundup: Healthy Buildings, Blockchain, AI, Skilled Workers, And More

Our Expert Panel Roundtable is an opinionated group. However, for a variety of reasons, we are sometimes guilty of not publishing their musings in a timely manner. At the end of 2020, we came across several interesting comments among those that were previously unpublished. Following is a catch-all collection of those responses, addressing some of the most current and important issues in the security marketplace in 2021.

Smart Offices: How Is Mobile ID Changing The Way We Access The Office?
Smart Offices: How Is Mobile ID Changing The Way We Access The Office?

If you’re a security or facilities manager, you may already be aware of the quiet revolution that’s taking place across businesses and organizations up and down the country. By the end of 2020, 20% of all ID and access control systems featured mobile capability, and this is set to increase by a further 34% over the next three years. There’s no doubt that using a smartphone or mobile device in place of traditional credential and access control is a growing trend that’s only been sped up by the pandemic. It’s true that many businesses are still very much focused on remote working, although many are now starting to implement new-and-improved strategies that are better suited to protect the workforce moving forward. Mobile ID systems As the next normal becomes clearer, businesses will be reviewing procedures such as access control, occupancy monitoring, reducing touch points, and tracking visitors. Mobile ID systems are ideally suited to this task. But what are the key reasons for considering such a setup in 2021? But why is this new technology so well-suited to future-proof your physical access system, and why is it becoming so popular? Eradicating outdated legacy credentials Have you seen just how vulnerable outdated Proximity card technology can be? Low-frequency 125kHz cards can be cloned in a matter of seconds with the use of cheap, readily available tools. Despite their weaknesses, they are still used by a huge majority of businesses – big and small. All smartphones include two industry-standard features that make them perfect for operating a secure, contactless credential Replacing such a system with a mobile-enabled system is one of the best ways to increase security ten-fold. Thanks to a cloud-based infrastructure, mobile ID offers best-in-class security and cryptography. All smartphones include two industry-standard features that make them perfect for operating a secure, contactless credential. Bluetooth Smart and NFC (Near Field Communication) make them the best product to operate such a credential via a secure app. If you’re looking for best-in-class security in 2021, mobile access is most definitely the way forward. Removing touch points across the business Reducing touch points and the adoption of touchless facilities has become a key priority for businesses in the wake of COVID-19. Even as businesses start to return to the office and operate a home/office split, it will be imperative that unnecessary contact is kept to an absolute minimum between staff. The traditional issuance of identification and access control credentials can pose problems in this regard. Facility and security managers who are responsible for onboarding and processing ID have done the process face to face. Mobile access makes it possible to carry this process out without people coming into direct content. First, the security manager has access to a secure portal, allowing them to create, manage and edit credentials anywhere. They can upload and remotely transfer mobile ID and access control credentials directly to users’ smartphones over the air. Via the secure app, users can view and see their credentials and immediately begin using it for ID and access control by simply placing their smartphone over card readers. Enabling a more flexible way of working The way in which we work has changed for good. Even as people more people return to the office in 2021, a majority of businesses will be operating a home/office split indefinitely. This once again reinforces the need for a smarter, more adaptable onboarding system. Implementing mobile ID is the perfect way of doing this: over-the-air delivery of credentials and security data is now a given, helping businesses create the perfect balance between the home and the office. No longer do people have to come into the office for the onboarding process. Increasing convenience and user experience More often businesses are realising the value mobile ID can have for enhancing the work experience as well as security Ok, so mobile ID is the perfect way of increasing security and adapting workplaces to a post-COVID way of working. And we’ve not even touched on the most obvious advantage yet: Convenience. How many times have you forgotten your ID card? We’re sure it’s more times than you forget your smartphone. These powerful processors have become intertwined with the way we carry out tasks on a daily basis. They’re so vital that people will soon notice if they’ve forgotten it. From an employee’s perspective, mobile ID and access control is simple, convenient, and extremely user-friendly. More and more businesses are realizing the value mobile ID can have for enhancing the work experience as well as security. From the employer’s perspective, mobile ID means it’s easier for administrators to manage access and credentials. Future-proofing access control now will ensure that in the longer term, mobile ID is well worth the investment. The annual expenditure of printing ID cards and purchasing credentials can be vast, while reissuance costs can also quickly add up for larger organizations. These issues are a thing of the past for businesses using mobile ID. Mobile ID perfect tool for 2021 and beyond Until mobile ID, new and improved credentials’ main focus was on increasing security. Mobile ID not only delivers that, but it also provides a more convenient way of accessing the office in a way that’s perfectly suited to returning to the office in 2021. If there was ever a time to upgrade, now is the time. Summing up, mobile access is changing the way we access the office by: Eliminating weak links in security systems such as outdated legacy card technologies Eradicating the need for touch points across multiple areas of the workplace Enabling a smarter, more flexible approach to onboarding Increasing convenience – for both employers and employees.