The MicroPower Technologies cameras were installed on a single light pole to view various sections of the festival site

UCSD is looking to position MicroPower Technologies cameras at several additional locations

The Customer

The University of California, San Diego (UCSD) is a public research university in La Jolla, California, established in 1960. Offering 200 undergraduate and graduate degree programs and enrolling approximately 39,000 students, the university occupies 2,141 acres near the coast of the Pacific Ocean, with the main campus about 1,152 acres.

The Challenge

UCSD’s existing surveillance system manages about 1,000 channels of video, including a mix of IP cameras (75 percent) and legacy analog cameras (25 percent). These devices view university centers, provide campus overviews, and operate alongside 12 mass notification system towers. Cameras also view animal research facilities, which can be targets for protests. A robust video management system is integrated into the campus police dispatch center and two other video monitoring centers. Even with the extensive surveillance system, however, there were locations previously beyond the view of campus police, especially remote locations outside the reach of the campus network or existing power supplies. Campus police also wanted additional video views of special events, specifically the Sun God Festival, a 10-hour Spring concert event with 25,000 attendees held in and around an athletic field beyond the boundaries of traditional surveillance.

"The cameras increase our ability to meet the needs of specific events. We don’t have to bear the high cost of additional infrastructure to meet our tactical needs as a police department"

Additional Surveillance for Sun God Festival

Gary Matthews, UCSD’s vice chancellor for resource management and planning, became interested in MicroPower Technologies’ wireless surveillance solution because of the environmental and sustainability advantages related to its use of solar power. The surveillance solution also doesn’t require trenching to provide power or network connectivity to a camera in a remote location, so installation doesn’t impact the environment. The self-contained solution uses solar power and connects wirelessly to a central video hub that ties into the network.

The UCSD Police Department evaluated the technology and decided to implement a trial installation to provide additional surveillance of the Sun God Festival in 2013. Layer3 Security Services was contracted to install three MicroPower Technologies solar, wireless cameras to capture views of the large open area where the festival is held. Surveillance would help to manage vehicle traffic and crowds. Specializing in network solutions to solve physical security problems, integrator firm Layer3 has a close relationship with MicroPower Technologies and had previously installed the system at several sites around San Diego.

The MicroPower Technologies cameras were installed on a single light pole to view various sections of the festival site. The system also included three separate solar panels (in addition to the solar panels that are part of the camera housing) and three wireless antennas to send signals to the system video hub located in line-of-sight and directly across the field in an annex building. Each element of the system was positioned to optimize views of the surrounding areas; the solar panels to maximize exposure to the sun; and the wireless antennas to provide optimal signal transmission. Layer3 mounted the elements for all three cameras on a large 18-in.-diameter light pole using metal bands and a substructure of galvanised pipe to support the various components (holes could not be drilled into the pole without weakening it.)

"Within half a day, we had the cameras set up and sending video to the building across the field. The university successfully expanded its video coverage without having to dig out any sod or cut through asphalt or concrete"

The cameras use existing lighting and automatically switch to low-light mode as necessary to continue providing clear views. “The cameras increase our ability to meet the needs of specific events,” said Roberto Meza, campus security services coordinator for UCSD police department. “We don’t have to bear the high cost of additional infrastructure to meet our tactical needs as a police department.”

Flexibility for Range of Uses on Campus

“The system provided us additional flexibility beyond the extra police awareness in the area,” adds Meza. “The Sun God event production managers and staff could also view the flow of pedestrian traffic, which enabled them to manage the event and adjust staff as needed.”

Installation was simple, says Dario Santana, President of Layer3 Security Services. “Within half a day, we had the cameras set up and sending video to the building across the field. The university successfully expanded its video coverage without having to dig out any sod or cut through asphalt or concrete.” He says the system’s low power usage avoids the need to install large auxiliary batteries.

 The avoidance of extra trenches across long distances provides money savings and other benefits, too. “We have a lot of environmental issues that would prohibit us from trenching, whether historical locations or sites that are being preserved, or state-mandated areas we can’t disrupt,” says Meza. “We are an environmentally-conscious campus.” Because the cameras are redeployable, they can be easily reconfigured for a special event or if the traffic flow changes in a parking lot.

Based on the successful Sun God Festival, UCSD is looking to position MicroPower Technologies cameras at several additional locations, such as parking lots and athletic fields beyond view of existing cameras. There is a large open park space right next to the athletic field with a jogging track and obstacle course in natural surroundings. The cameras could capture any unauthorized activity after the facility is closed and help monitor the area for possible accidents or injury. Another proposed installation is a planned lifeguard storage area, where cameras could be used to view the main road to the beach and the perimeter of the new structure. The flexibility to move cameras easily also keeps costs low, while enabling the UCSD police department to provide video coverage of remote locations and future special events.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

How Have Security Solutions Failed Our Schools?
How Have Security Solutions Failed Our Schools?

School shootings are a high-profile reminder of the need for the highest levels of security at our schools and education facilities. Increasingly, a remedy to boost the security at schools is to use more technology. However, no technology is a panacea, and ongoing violence and other threats at our schools suggest some level of failure. We asked this week’s Expert Panel Roundtable: How have security solutions failed our schools and what is the solution?

Why Visualization Platforms Are Vital For An Effective Security Operation Center (SOC)
Why Visualization Platforms Are Vital For An Effective Security Operation Center (SOC)

Display solutions play a key role in SOCs in providing the screens needed for individuals and teams to visualize and share the multiple data sources needed in an SOC today. Security Operation Center (SOC) Every SOC has multiple sources and inputs, both physical and virtual, all of which provide numerous data points to operators, in order to provide the highest levels of physical and cyber security, including surveillance camera feeds, access control and alarm systems for physical security, as well as dashboards and web apps for cyber security applications. Today’s advancements in technology and computing power not only have increasingly made security systems much more scalable, by adding hundreds, if not thousands, of more data points to an SOC, but the rate at which the data comes in has significantly increased as well. Accurate monitoring and surveillance This has made monitoring and surveillance much more accurate and effective, but also more challenging for operators, as they can’t realistically monitor the hundreds, even thousands of cameras, dashboards, calls, etc. in a reactive manner. Lacking situational awareness is often one of the primary factors in poor decision making In order for operators in SOC’s to be able to mitigate incidents in a less reactive way and take meaningful action, streamlined actionable data is needed. This is what will ensure operators in SOC truly have situational awareness. Situational awareness is a key foundation of effective decision making. In its simplest form, ‘It is knowing what is going on’. Lacking situational awareness is often one of the primary factors in poor decision making and in accidents attributed to human error. Achieving ‘true’ situational awareness Situational awareness isn’t just what has already happened, but what is likely to happen next and to achieve ‘true’ situational awareness, a combination of actionable data and the ability to deliver that information or data to the right people, at the right time. This is where visualization platforms (known as visual networking platforms) that provide both the situational real estate, as well as support for computer vision and AI, can help SOCs achieve true situational awareness Role of computer vision and AI technologies Proactive situational awareness is when the data coming into the SOC is analyzed in real time and then, brought forward to operators who are decision makers and key stakeholders in near real time for actionable visualization. Computer vision is a field of Artificial Intelligence that trains computers to interpret and understand digital images and videos. It is a way to automate tasks that the human visual system can also carry out, the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images. There are numerous potential value adds that computer vision can provide to operation centers of different kinds. Here are some examples: Face Recognition: Face detection algorithms can be applied to filter and identify an individual. Biometric Systems: AI can be applied to biometric descriptions such as fingerprint, iris, and face matching. Surveillance: Computer vision supports IoT cameras used to monitor activities and movements of just about any kind that might be related to security and safety, whether that's on the job safety or physical security. Smart Cities: AI and computer vision can be used to improve mobility through quantitative, objective and automated management of resource use (car parks, roads, public squares, etc.) based on the analysis of CCTV data. Event Recognition: Improve the visualization and the decision-making process of human operators or existing video surveillance solutions, by integrating real-time video data analysis algorithms to understand the content of the filmed scene and to extract the relevant information from it. Monitoring: Responding to specific tasks in terms of continuous monitoring and surveillance in many different application frameworks: improved management of logistics in storage warehouses, counting of people during event gatherings, monitoring of subway stations, coastal areas, etc. Computer Vision applications When considering a Computer Vision application, it’s important to ensure that the rest of the infrastructure in the Operation Center, for example the solution that drives the displays and video walls, will connect and work well with the computer vision application. The best way to do this of course is to use a software-driven approach to displaying information and data, rather than a traditional AV hardware approach, which may present incompatibilities. Software-defined and open technology solutions Software-defined and open technology solutions provide a wider support for any type of application the SOC may need Software-defined and open technology solutions provide a wider support for any type of application the SOC may need, including computer vision. In the modern world, with everything going digital, all security services and applications have become networked, and as such, they belong to IT. AV applications and services have increasingly become an integral part of an organization’s IT infrastructure. Software-defined approach to AV IT teams responsible for data protection are more in favor of a software-defined approach to AV that allow virtualised, open technologies as opposed to traditional hardware-based solutions. Software’s flexibility allows for more efficient refreshment cycles, expansions and upgrades. The rise of AV-over-IP technologies have enabled IT teams in SOC’s to effectively integrate AV solutions into their existing stack, greatly reducing overhead costs, when it comes to technology investments, staff training, maintenance, and even physical infrastructure. AV-over-IP software platforms Moreover, with AV-over-IP, software-defined AV platforms, IT teams can more easily integrate AI and Computer Vision applications within the SOC, and have better control of the data coming in, while achieving true situational awareness. Situational awareness is all about actionable data delivered to the right people, at the right time, in order to address security incidents and challenges. Situational awareness is all about actionable data delivered to the right people Often, the people who need to know about security risks or breaches are not physically present in the operation centers, so having the data and information locked up within the four walls of the SOC does not provide true situational awareness. hyper-scalable visual platforms Instead there is a need to be able to deliver the video stream, the dashboard of the data and information to any screen anywhere, at any time — including desktops, tablets phones — for the right people to see, whether that is an executive in a different office or working from home, or security guards walking the halls or streets. New technologies are continuing to extend the reach and the benefits of security operation centers. However, interoperability plays a key role in bringing together AI, machine learning and computer vision technologies, in order to ensure data is turned into actionable data, which is delivered to the right people to provide ‘true’ situational awareness. Software-defined, AV-over-IP platforms are the perfect medium to facilitate this for any organizations with physical and cyber security needs.

Securing Mobile Vehicles: The Cloud and Solving Transportation Industry Challenges
Securing Mobile Vehicles: The Cloud and Solving Transportation Industry Challenges

Securing Intelligent Transportation Systems (ITS) in the transportation industry is multi-faceted for a multitude of reasons. Pressures build for transit industry players to modernise their security systems, while also mitigating the vulnerabilities, risks, and growth-restrictions associated with proprietary as well as integrated solutions. There are the usual physical security obstacles when it comes to increasingly integrated solutions and retrofitting updated technologies into legacy systems. Starting with edge devices like cameras and intelligent sensors acquiring video, analytics and beyond, these edge devices are now found in almost all public transportation like buses, trains, subways, airplanes, cruise lines, and so much more. You can even find them in the world’s last manually operated cable car systems in San Francisco. The next layer to consider is the infrastructure and networks that support these edge devices and connect them to centralized monitoring stations or a VMS. Without this layer, all efforts at the edge or stations are in vain as you lose the connection between the two. And the final layer to consider when building a comprehensive transit solution is the software, recording devices, or viewing stations themselves that capture and report the video. The challenge of mobility However, the transportation industry in particular has a very unique challenge that many others do not – mobility. As other industries become more connected and integrated, they don’t usually have to consider going in and out or bouncing between networks as edge devices physically move. Obviously in the nature of transportation, this is key. Have you ever had a bad experience with your cellular, broadband or Wi-Fi at your home or office? You are not alone. The transportation industry in particular has a very unique challenge that many others do not – mobility Can you trust these same environments to record your surveillance video to the Cloud without losing any frames, non-stop 24 hours a day, 7 days a week, 365 days a year? To add to the complexity – how do you not only provide a reliable and secure solution when it’s mobile, traveling at varying speeds, and can be in/out of coverage using various wireless technologies? Waiting to upload video from a transport vehicle when it comes into port, the station, or any centralized location is a reactive approach that simply will not do any longer. Transit operations require a more proactive approach today and the ability to constantly know what is going on at any given time on their mobile vehicles, and escalate that information to headquarters, authorities, or law enforcement if needed; which can only occur with real-time monitoring. This is the ultimate question when it comes to collecting, analyzing, and sharing data from mobile vehicles – how to get the video from public transportation vehicles alike to headquarters in real time! Managing video data In order to answer this question, let’s get back to basics. The management and nature of video data differs greatly from conventional (IT) data. Not only is video conducted of large frames, but there are specific and important relationships among the frames and the timing between them. This relationship can easily get lost in translation if not handled properly. This is why it’s critical to consider the proper way to transmit large frames while under unstable or variable networks. The Internet and its protocols were designed more than two decades ago and purposed for conventional data. Although the Internet itself has not changed, today’s network environments run a lot faster, expand to further ranges, and support a variety of different types of data. Because the internet is more reliable and affordable than in the past some might think it can handle anything. However, it is good for data, but not for video. This combination makes it the perfect time to convert video recording to the Cloud! Video transmission protocol One of the main issues with today’s technology is the degradation of video quality when transmitting video over the Internet. ITS are in dire need for reliable transmission of real-time video recording. To address this need a radical, yet proven, video transmission protocol has recently been introduced to the market. It uses AI technology and to adapt to different environments in order to always deliver high quality, complete video frames. This protocol, when equipped with encryption and authentication, enables video to be transmitted reliably and securely over the Internet in a cloud environment. One of the main issues with today’s technology is the degradation of video quality when transmitting video over the Internet Finally, transportation industry has a video recording Cloud solution that is designed for (massive) video that can handle networks that might be experiencing high error rate. Such a protocol will not only answer the current challenges of the transportation industry, but also make the previously risky Cloud environment safe for even the most reserved environments and entities. With revolutionary transmission protocols, the time is now to consider adopting private Cloud for your transportation operations.