Video Surveillance software - Expert commentary

Tackling The Challenge Of The Growing Cybersecurity Gap
Tackling The Challenge Of The Growing Cybersecurity Gap

The SolarWinds cyberattack of 2020 was cited by security experts as “one of the potentially largest penetrations of Western governments” since the Cold War. This attack put cybersecurity front and center on people’s minds again. Hacking communication protocol The attack targeted the US government and reportedly compromised the treasury and commerce departments and Homeland Security. What’s interesting about the SolarWinds attack is that it was caused by the exploitation of a hacker who injected a backdoor communications protocol.  This means that months ahead of the attack, hackers broke into SolarWinds systems and added malicious code into the company’s software development system. Later on, updates being pushed out included the malicious code, creating a backdoor communication for the hackers to use. Once a body is hacked, access can be gained to many. An explosion of network devices What has made the threat of cyberattacks much more prominent these days has been IT's growth in the last 20 years, notably cheaper and cheaper IoT devices. This has led to an explosion of network devices. IT spending has never really matched the pace of hardware and software growth Compounding this issue is that IT spending has never really matched the pace of hardware and software growth. Inevitably, leading to vulnerabilities, limited IT resources, and an increase in IoT devices get more attention from would-be hackers. Bridging the cybersecurity gap In the author’s view, this is the main reason why the cybersecurity gap is growing. This is because it inevitably boils down to counter-strike versus counter-strike. IT teams plug holes, and hackers find new ones, that is never going to stop. The companies must continue fighting cyber threats by developing new ways of protecting through in-house testing, security best practice sources, and both market and customer leads. End-user awareness One of the key battlegrounds here is the education of end-users. This is an area where the battle is being won at present, in the author’s opinion. End-users awareness of cybersecurity is increasing. It is crucial to educate end-users on what IoT devices are available, how they are configured, how to enable it effectively, and critically, how to use it correctly and safely. Physical security network A valuable product that tackles cybersecurity is, of course, Razberi Monitor™, which is new to ComNet’s portfolio. Monitor™ is a software platform that provides a top-down view of the physical security network and ecosystem. Monitor™ is a software platform that provides a top-down view of the physical security network and ecosystem It monitors and manages all the system components for cybersecurity and system health, providing secure visibility into the availability, performance, and cyber posture of servers, storage, cameras, and networked security devices. Proactive maintenance By intelligently utilizing system properties and sensor data, Razberi’s award-winning cybersecurity software prevents problems while providing a centralized location for asset and alert management. Monitor™ enables proactive maintenance by offering problem resolutions before they become more significant problems. Identifying issues before they fail and become an outage is key to system availability and, moreover, is a considerable cost saving.

Physical Security And The Cloud: Why One Can’t Work Without The Other
Physical Security And The Cloud: Why One Can’t Work Without The Other

Human beings have a long-standing relationship with privacy and security. For centuries, we’ve locked our doors, held close our most precious possessions, and been wary of the threats posed by thieves. As time has gone on, our relationship with security has become more complicated as we’ve now got much more to be protective of. As technological advancements in security have got smarter and stronger, so have those looking to compromise it. Cybersecurity Cybersecurity, however, is still incredibly new to humans when we look at the long relationship that we have with security in general. As much as we understand the basics, such as keeping our passwords secure and storing data in safe places, our understanding of cybersecurity as a whole is complicated and so is our understanding of the threats that it protects against. However, the relationship between physical security and cybersecurity is often interlinked. Business leaders may find themselves weighing up the different risks to the physical security of their business. As a result, they implement CCTV into the office space, and alarms are placed on doors to help repel intruders. Importance of cybersecurity But what happens when the data that is collected from such security devices is also at risk of being stolen, and you don’t have to break through the front door of an office to get it? The answer is that your physical security can lose its power to keep your business safe if your cybersecurity is weak. As a result, cybersecurity is incredibly important to empower your physical security. We’ve seen the risks posed by cybersecurity hacks in recent news. Video security company Verkada recently suffered a security breach as malicious attackers obtained access to the contents of many of its live camera feeds, and a recent report by the UK government says two in five UK firms experienced cyberattacks in 2020. Cloud computing – The solution Cloud stores information in data centres located anywhere in the world, and is maintained by a third party Cloud computing offers a solution. The cloud stores your information in data centres located anywhere in the world and is maintained by a third party, such as Claranet. As the data sits on hosted servers, it’s easily accessible while not being at risk of being stolen through your physical device. Here’s why cloud computing can help to ensure that your physical security and the data it holds aren’t compromised. Cloud anxiety It’s completely normal to speculate whether your data is safe when it’s stored within a cloud infrastructure. As we are effectively outsourcing our security by storing our important files on servers we have no control over - and, in some cases, limited understanding of - it’s natural to worry about how vulnerable this is to cyber-attacks. The reality is, the data that you save on the cloud is likely to be a lot safer than that which you store on your device. Cyber hackers can try and trick you into clicking on links that deploy malware or pose as a help desk trying to fix your machine. As a result, they can access your device and if this is where you’re storing important security data, then it is vulnerable. Cloud service providers Cloud service providers offer security that is a lot stronger than the software in the personal computer Cloud service providers offer security that is a lot stronger than the software that is likely in place on your personal computer. Hyperscalers such as Microsoft and Amazon Web Service (AWS) are able to hire countless more security experts than any individual company - save the corporate behemoth - could afford. These major platform owners have culpability for thousands of customers on their cloud and are constantly working to enhance the security of their platforms. The security provided by cloud service providers such as Claranet is an extension of these capabilities. Cloud resistance Cloud servers are located in remote locations that workers don’t have access to. They are also encrypted, which is the process of converting information or data into code to prevent unauthorized access. Additionally, cloud infrastructure providers like ourselves look to regularly update your security to protect against viruses and malware, leaving you free to get on with your work without any niggling worries about your data being at risk from hackers. Data centres Cloud providers provide sophisticated security measures and solutions in the form of firewalls and AI Additionally, cloud providers are also able to provide sophisticated security measures and solutions in the form of firewalls and artificial intelligence, as well as data redundancy, where the same piece of data is held within several separate data centres. This is effectively super-strong backup and recovery, meaning that if a server goes down, you can access your files from a backup server. Empowering physical security with cybersecurity By storing the data gathered by your physical security in the cloud, you're not just significantly reducing the risk of cyber-attacks, but also protecting it from physical threats such as damage in the event of a fire or flood. Rather than viewing your physical and cybersecurity as two different entities, treat them as part of one system: if one is compromised, the other is also at risk. They should work in tandem to keep your whole organization secure.

Making School Safety A Priority With Smart Technology
Making School Safety A Priority With Smart Technology

With pupils in the UK set to go back to school on 8 March, there are a number of safety measures schools need to implement to ensure the health and wellness of the staff, students, and school communities.  The first lockdown and closure of schools brought on by the coronavirus pandemic fired a “warning shot” for education facilities managers, forcing head-teachers to re-examine school safety standards. Now that a third lockdown is here and schools have been shut down for a second time, anyone behind the curve with the benefits of smart technology should get on board now before children return to the school environment. And with the ever-changing variants of the COVID-19 virus, schools can’t afford to be “late to class” when it comes to health and safety. Preventing the spread of disease Some schools in the US have been using smart technologies for a while to measure utility consumption and efficiency, streamline maintenance and enhance general school safety. These technologies are playing a significant role in keeping school buildings healthy and preventing the spread of disease. Let’s take a look at how smart technology can help schools to become safer, as well as more energy-efficient and cost-effective.   Thermal detection cameras  Smart cameras placed at entry points of a school can remove the manual task of temperature testing Smart cameras placed at entry points of a school can remove the manual task of temperature testing. These cameras provide medically-accurate, real-time temperatures of individuals in real-time. If a high temperature is detected, the software sends an instant alert to the relevant party. It can also be set to deny access to those with high temperatures or to people not wearing masks.  Safer water  As the coronavirus continues to sweep through the world’s population, healthcare providers should also be on heightened alert for Legionnaires’ disease, another potential cause of pneumonia with similar symptoms. Legionella is a potentially deadly bacteria that can infect a school’s water supply and cause an outbreak of Legionnaire’s disease. It’s a school's duty of care to prevent Legionella infection by monitoring the risk of the bacteria proliferating.  Particularly as schools reopen and previously stagnant plumbing and cooling systems return to use, additional Legionella cases could rear their ugly head to emergency departments in the coming months. Traces of Legionella were recently found at a Worcestershire school. The school was forced to remain shut while treatment and testing took place. Automated flushing and temperature testing Instant alerts will notify relevant staff if water temperatures fall within “Legionella-friendly” parameters The Health and Safety Executive advises, “If your building was closed or has reduced occupancy during the coronavirus (COVID-19) outbreak, water system stagnation can occur due to lack of use, increasing the risks of Legionnaires’ disease… If the water system is still used regularly, maintain the appropriate measures to prevent legionella growth.” Typically, managing the risk of Legionella includes running all outlets for two minutes, taking and recording the temperature of the water to ensure that it’s not conducive to Legionella growth. This is a time-consuming process, which is why schools are looking for automated water temperature monitoring systems. This smart system with automated flushing and temperature testing reports and records water temperature data in real-time. Instant alerts will notify relevant staff if water temperatures fall within “Legionella-friendly” parameters.  Cleaner air  Advisers say that improving air filtration and ventilation in schools can help mitigate the potential airborne transmission of COVID-19. Strategies include: Increasing outdoor air ventilation Filtering indoor air Using portable air cleaners with HEPA filters  Smart building technologies such as advanced HVAC controls can help facilities managers promote cleaner air with less hassle. For example, smart HVAC systems use sensors to remotely monitor and control variables such as:  Humidity Temperature Indoor air quality The level of carbon dioxide and other pollutants The technology is also energy-efficient and cost-effective.  While these solutions may be key to the reopening of schools in the era of COVID-19, they also bring long-term benefits. Although COVID-19 may have accelerated the adoption of smart technology, many of these solutions are focused on health, wellness, and security in general; which have been needed in school systems for a long time.

Latest FLIR Systems news

FLIR Wins Additional $15.4M Contract For Black Hornet Nano-UAV Systems For U.S. Army Soldier Borne Sensor Program
FLIR Wins Additional $15.4M Contract For Black Hornet Nano-UAV Systems For U.S. Army Soldier Borne Sensor Program

FLIR Systems, Inc. announced it has won an additional $15.4 million contract to deliver its FLIR Black Hornet® 3 Personal Reconnaissance Systems (PRS) to the U.S. Army. The advanced nano-unmanned aerial vehicles (UAVs) are being used to augment squad and small unit-level surveillance and reconnaissance capabilities as part of the Army’s Soldier Borne Sensor (SBS) program. In late 2018, the U.S. Army began acquiring Black Hornet 3’s to support the SBS effort. Since then, it has placed orders totaling more than $85 million for the FLIR nano-UAV. Live video and HD images Extremely light and well suited for operations in contested environments, nearly silent, and with a flight time up to 25 minutes, the combat-proven, pocket-sized Black Hornet PRS transmits live video and HD still images back to the operator. Its information feed provides soldiers with immediate covert situational awareness to help them perform missions more effectively. FLIR has delivered more than 12,000 Black Hornet nano-UAVs to defense and security forces worldwide.  Enhanced safety of troops “Unmanned systems like our Black Hornet provide enhanced standoff and safety to troops in harm’s way, which is critical as militaries intensify their plans for multi-domain operations,” said Roger Wells, VP, and general manager of Unmanned Systems & Integrated Solutions at FLIR. “We’re honored the Black Hornet plays an integral part in the Army’s Soldier Borne Sensor program. Every new order is a testament to the difference this technology can make on the battlefield and renews our commitment to advancing the science.” The award-winning Black Hornet is designed and built by FLIR in Norway. Deliveries will begin midyear 2021.

FLIR Systems Launches Radiometric Version Of Boson Thermal Imaging Camera Module
FLIR Systems Launches Radiometric Version Of Boson Thermal Imaging Camera Module

The Boson® camera core represents the best in FLIR high-performance uncooled thermal imaging technology within a small, lightweight, and low-power package, and FLIR partners and customers will have the option to purchase radiometric versions that can capture the temperature data of every pixel in the scene. Camera configurations The new Boson radiometric camera core comes in two versions, 640 x 512 or 320 x 256 resolutions with multiple lens configurations and the ability to capture temperature data for quantitative assessment. The camera core is meant for use in systems across a variety of applications including firefighting, surveillance, security, unmanned systems, industrial inspection, and fixed-asset monitoring. Assessing temperature accuracy The Boson SDK feature provides guidance across five confidence grades offering in-the-moment assessment  Featuring radiometric accuracy provides ±5 °C (±8 °F) or ±5% temperature measurement accuracy, the Boson Radiometric cameras include a Spot Meter Accuracy software feature that provides an assessment of how accurate a given temperature measurement appears in the scene. Available as telemetry data accessed through the Boson SDK or the Boson graphical user interface (GUI), this feature provides guidance across five confidence grades offering in-the-moment assessment to help improve temperature measurement confidence. Spot meter accuracy In addition, the Spot Meter Accuracy software feature gives operators the ability to account for dynamic ambient temperatures, along with the ability to configure measurements prior to operation, including adjusting emissivity and thermal gain settings. These functions are crucial for outdoor environments and the swift movements of unmanned antenna drones and automated ground vehicles. The software also offers inspection and assessment features, including spot meters and windows that pinpoint temperature measurement in the scene that the camera is focused on, and atmospheric correction capabilities during post-processing analysis. 40 years of thermal imaging expertise The Boson family of thermal imaging cores is an important part of the 40 plus years of thermal imaging expertise that FLIR offers. As a result of this expertise, the Boson thermal imaging cores utilize a high sensitivity 12-micron pixel pitch detector that provides high-resolution thermal imaging in a small, low-power, lightweight, and turnkey package. All Boson cores feature FLIR infrared video processing architecture, noise reduction filters, and local-area contrast. The imaging processing capabilities accommodate industry-standard communication interfaces, including visible CMOS and USB.

FLIR's Dual-Vision Cameras For Automatic Incident Detection Keep Norwegian Tunnels Safe
FLIR's Dual-Vision Cameras For Automatic Incident Detection Keep Norwegian Tunnels Safe

FLIR was selected to provide intelligent dual-vision cameras with embedded Automatic Incident Detection (AID) to be installed in the new Hundvåg and Eiganes tunnels in Norway. The cameras alert tunnel operators on a variety of possible traffic incidents, including stopped vehicles, lost cargo, and pedestrians, allowing emergency services to react fast. The Ryfast project Norway has complex geography. The many fjords, glaciers, and mountains make traveling without natural obstacles a challenge, which is why the country has so many tunnels. The Ryfast project is one of the country’s most recent additions in tunnel infrastructure, running from the city of Stavanger to the municipality of Strand. It is also Norway’s largest road project to date. The Ryfast project consists of three tunnels. The 14.4 km Ryfylke tunnel, running from the village of Tau to the isle of Hundvåg, was opened in December 2019. The 5.5 km Hundvåg tunnel, from Hundvåg to Stavanger, was opened in April 2020. The latter tunnel connects with the 3.7 km Eiganes tunnel, which runs beneath the city of Stavanger, as part of the E39 coastal highway. Safety in dense traffic Trafsys again selected FLIR Systems to deliver the AID camera technology When the Norwegian Public Roads Administration (NPRA) and tunnel contractor were looking for a reliable tunnel safety system for the Hundvåg and Eiganes tunnels, they intended to uphold the same high safety standards the organization is known for. This is especially critical given the dense traffic situation in the twin-bore tunnels - 10,000 and 35,000 daily vehicles for the Hundvåg and Eiganes tunnels respectively. For both tunnels, Nordic system integrator Trafsys was selected to supply the Traffic Control & Monitoring system, video surveillance (CCTV), and Automatic Incident Detection (AID), among other things. Trafsys again selected FLIR Systems to deliver the AID camera technology, based on both companies’ many years of experience in tunnel safety projects.  FLIR’s detection systems “We were already convinced of the stability of FLIR’s incident detection systems because we have been using them in previous tunnel projects,” says Knut-Olav Bjelland, Department Manager at Trafsys, AS. “FLIR’s powerful detection algorithms on visual traffic cameras have proven their performance in tunnel projects worldwide. With FLIR’s dual-vision cameras, we were able to combine the company’s proven video analytics with the power of thermal imaging.”    Visual and thermal in one camera In total, 332 FLIR cameras have been installed in the Hundvåg and Eiganes tunnels combined Trafsys chose FLIR’s ITS Series Dual AID cameras, which combine a thermal and visual camera with FLIR’s advanced video analytics. In total, 332 FLIR cameras have been installed in the Hundvåg and Eiganes tunnels combined. With the thermal imaging camera, the FLIR ITS Series Dual AID provides critical information on traffic incidents, including stopped vehicles, sudden speed drops, wrong-way drivers, pedestrians, fallen objects, and starting fires. Operators also use the high-resolution (640 x 512 pixels) thermal image to verify the incident and to see where the incident took place. The use of thermal imaging cameras has especially proven valuable for tunnel entrances and exits. There, shadows or direct sunlight could obstruct the view of the visible-light camera and therefore disturb traffic detection. Because they detect heat, not light, thermal cameras have no issues with these phenomena and as a result, they can detect traffic 24/7, in all weather conditions. Detection and performance “When you look at the complex topography of the Hundvåg and Eiganes tunnels, a camera system like the FLIR ITS Series Dual AID is the most efficient technology choice,” says Knut-Olav. “And with the many bends and turns in both tunnels, you need appropriate detection systems at many different positions.” “The cameras’ daily performance is excellent,” says Anders Helle, Construction/Maintenance Manager at NPRA. “We can clearly see the detected incidents on the thermal image in our control room, which reduces the time to understand the situation and speeds up our decision-making process. Based on the system’s reliability, performance, and low unwanted alarm rate, we would definitely recommend the FLIR dual-vision camera for automatic incident detection.” Providing safety in tunnels “We are honored to be selected for this major tunnel safety project,” says Sukhdev Bhogal, Business Development Director at FLIR Systems. “It is the first time that our FLIR ITS Dual AID cameras have been deployed in such large numbers, and we are looking forward to making more tunnels in the region a safer place to travel through.” Safety is critical, given the dense traffic situation in the twin-bore tunnels - 10,000 and 35,000 daily vehicles for the Hundvåg and Eiganes tunnels respectively. Early fire detection The dual cameras’ fire detection functionality demonstrates the early detection capability within seconds  “Apart from the great detection performance we are used to from FLIR, having a combined visual and thermal camera from one vendor has nothing but benefits,” says Knut-Olav. “Combining both cameras into one detection unit makes it a very compact solution, and cabling is also much simpler.” The dual cameras’ fire detection functionality has also been switched on to demonstrate the early detection capability within seconds of the appearance of visible flames. This could be crucial for tunnel operators to close the tunnel fast and take the necessary decisions in the case of a fire. The thermal technology from FLIR ITS also allows seeing through the smoke. This allows operators to detect the presence of pedestrians and vehicles in a smoke-filled traffic tunnel. The fire detection functionality was already demonstrated when a car caught fire in the Hundvåg tunnel in July 2020. The FLIR ITS Dual thermal AID camera picked up the fire within 7 seconds after visible flames appeared, following its first alert for a stopped vehicle and pedestrians.

Related white papers

Delivering a Smart, Secure and Healthy Workplace with Cloud

Cloud Video and Smart Cities

Security Investments Retailers Should Consider For Their 2021 Budget