MESSOA SLI080 High Power Intelligent IR LED Illuminator With Adjustable Diffuser
MESSOA SLI080 High Power Intelligent IR LED Illuminator With Adjustable Diffuser

MESSOA SLI080 is a high performance infrared LED illuminator designed to optimize the nighttime performance of CCTV or network cameras for low light installations up to 300m. It provides operators with the maximum flexibility to adapt to diverse security requirements and the maximum output performance for long- and wide-range security applications.EnduraLight technology yields long-lasting LED illuminationThe SLI080 incorporates the advanced EnduraLight technology, using constant LED current circuit design, top-tier OSRAM LEDs, and the innovative fin-array heat spreaders to deliver durable, steady output over its service life for more than 100,000 hours at the operating temperature of 60°C.Featuring proprietary LumiiFlex adjustable diffuser technology for wider coverage The SLI080 features an industry-leading LumiiFlex technology, a 5-step adjustable diffuser, with which the operators can accordingly adjust the illumination patterns as required at job sites. It frees images from over exposure and hot spots to ensure the required field of view is evenly covered with uniform illumination. This proprietary design offers operators more flexibility in this industry than others. Shutter Synchronisation enhances light intensity right on the spot Specifically designed for traffic applications, the SLI080 is capable of synchronising its LED pulse with the camera's shutter speed to provide precise illumination, boosting light intensity at crucial moments when the shutter opens for image capturing. The SLI080 yields exceptional nighttime images when coupled with MESSOA's SCR515PRO traffic camera for much enhanced LPR/ANPR results.Advanced features make the SLI080 a complete packageThe SLI080 is solidly built with a robust housing and IP68-rated waterproof design, which is able to withstand any harsh weather conditions. Other advanced features, such as RS-485 remote control, expandable connection support, failure alarm, and dual-voltage make the SLI080 an all-in-one solution for all kinds of illuminating needs in security applications. The SLI080 comes with a 3-year product warranty.

Add to Compare

Security camera lighting - Expert commentary

Development Of Integrated Thermal Imaging Technology Into Evolving Market Verticals
Development Of Integrated Thermal Imaging Technology Into Evolving Market Verticals

Global and domestic threats have highlighted the need for tighter security across all verticals. One of the technologies that has redefined situational awareness and intrusion detection is thermal imaging. Once a technology exclusively manufactured for the military operations, thermal cameras today are deployed across hundreds of security applications and continue to see strong demand in existing and emerging commercial markets. With thermal technology, security personnel can see in complete darkness as well as in light fog, smoke and rain Technology Overview And Early Adoption What distinguishes thermal cameras from optical sensors is their ability to produce images based on infrared energy, or heat, rather than light. By measuring the heat signatures of all objects and capturing minute differences between them, thermal cameras produce clear, sharp video despite unfavorable environmental conditions. With thermal technology, security personnel can see in complete darkness as well as in light fog, smoke and rain. Originally a military developed, commercially qualified technology, the first thermal cameras for military and aircraft use appeared in the 1950s. By the 1960s, the technology had been declassified and the first thermal camera for commercial use was introduced. However, it wasn’t until the late 1990s - when FLIR Systems introduced a camera with an uncooled thermal detector - when the technology began to see substantial adoption beyond government defense deployments. Installations At Critical Infrastructure Sites In the 2000s, industrial companies were some of the first adopters of thermal, using the technology for predictive maintenance to monitor overheating and machine malfunctions. In the years following the September 11 terrorist attacks in 2001, there was an increase in thermal camera installations across critical infrastructure sites. Stricter security requirements drove the deployment of thermal cameras for perimeter protection, especially in the nuclear power sector. Thermal cameras produce clear video in daylight, low light or no light scenarios and their sharp images result in higher performing analytics In 2010, the U.S. Nuclear Regulatory Committee released its 73.55 policy, which states nuclear facilities must “provide continuous surveillance, observation and monitoring” as a means to enhance threat detection and deterrence efforts onsite. Because thermal cameras produce clear video in daylight, low light or no light scenarios and because their sharp images result in higher performing analytics, thermal cameras quickly became the preferred option for nuclear facilities. Likewise, following the 2013 sniper attack on PG&E Corporation’s Metcalf transmission substation, the Federal Energy Regulation Commission introduced the Critical Infrastructure Protection Standard 014 (CIP-014). The policy requires utilities to identify threats to mission critical assets and implement a security system to mitigate those risks. This statute also led to more thermal installations in the utility sector as thermal cameras’ long-range capabilities are ideal for detection of approaching targets beyond the fence line. The demand from both industrial and critical infrastructure entities, as well as other factors, helped drive volume production and price reduction for thermal, making the technology more accessible to the commercial security marketplace. Commercial Applications In recent years, the increasing affordability of thermal cameras along with the introduction of new thermal offerings has opened the door to new commercial applications for the technology. In the past, thermal cameras were designed for applications with enormous perimeters, where the camera needed to detect a human from 700 meters away. Locations like car dealerships, marinas and construction supply facilities can be protected by precise target detection, thermal analytic cameras providing an early warning to security personnel Today, there are thermal cameras specifically designed for short- to mid-range applications. Developed for small to medium enterprises, these thermal cameras ensure property size and security funds are no longer barriers to adoption. Lumber yards, recreation fields and sports arenas are some of the commercial applications now able to implement thermal cameras for 24-hour monitoring and intrusion detection. Affordable thermal cameras with onboard analytics have become attractive options for commercial businesses Innovation And Advancements Innovation and advancements in the core technology have also spurred growth in thermal camera deployment, providing faster image processing, higher resolution, greater video analytic capabilities and better camera performance. In particular, affordable thermal cameras with onboard analytics have become attractive options for commercial businesses that need outdoor, wide area protection. Car dealerships, marinas and construction supply locations all store valuable merchandise and materials outside. Without protection, these assets are vulnerable to vandalism and theft. However, by providing precise target detection, thermal analytic cameras provide an early warning to security personnel so that they can intervene before a crime is committed. By helping to deter just one incident, the thermal solution delivers a clear ROI. New Market Opportunities Not only are there more thermal cameras in use today than ever before, but there are also more thermal sensors being integrated with other multi-sensor systems, driving the adoption of thermal in new markets. For large perimeter surveillance applications, thermal is repeatedly being integrated with radar and drones to expand situational awareness beyond the point of fixed cameras. Users get immediate, accurate alerts of approaching targets and evidentiary class video for target assessment In the commercial market, thermal imagers are combined with optical sensors, analytics and LED illuminators into one solution that integrates with central monitoring station platforms. By bringing these technologies together, users get immediate, accurate alerts of approaching targets and evidentiary class video for target assessment. The result is a lower number of false positives, reducing the total cost of ownership for the solution. These multi-sensor solutions also feature two-way audio capabilities, which enable remote security officers to act as “virtual guards” and speak to intruders in real-time to dissuade them from illegal activity. The introduction of solutions that integrate all these state-of-the-art technologies under one unit reduces the amount of capital and infrastructure needed for deployment. Consequently, more small businesses and alarm monitoring companies can implement advanced perimeter security technologies like thermal sensors, some for the very first time. Thermal cameras have gone from military defense devices to widespread commercial security cameras Multi-Sensor Thermal Solutions Multi-sensor solutions featuring thermal are quickly gaining traction and opening the door to new business opportunities for the security channel. One of the primary reasons for the strong market interest in these systems is they enable integrators to increase their recurring monthly revenue (RMR). With intense price competition and eroding margins on CCTV equipment, integrators have to rely on RMR to grow their businesses. Offering remote video monitoring services and virtual guarding technologies is one of the best ways to do so.  Additionally, there is a clear demand for it. Central stations are continually looking for new technologies to offer their customers and businesses are interested in economical alternatives to physical guards. In conclusion, thermal cameras have gone from military defense devices to widespread commercial security cameras that are a substantial segment of the outdoor security protection market. From nuclear power plants to construction locations, thermal technology is being implemented to secure sites around the globe.

Security And Safety Drive Smart Building Strategies For The Future
Security And Safety Drive Smart Building Strategies For The Future

Johnson Controls recently unveiled the findings of its 2018 Energy Efficiency Indicator (EEI) survey that examined the current and planned investments and key drivers to improve energy efficiency and building systems integration in facilities. Systems integration was identified as one of the top technologies expected to have the biggest impact on the implementation in smart buildings over the next five years, with respondents planning to invest in security, fire and life-safety integrations more so than any other systems integration in the next year. As advanced, connected technologies drive the evolution of smart buildings, security and safety technologies are at the center of more intelligent strategies as they attribute to overall building operations and efficiencies. SecurityInformed.com spoke with Johnson Controls, Building Solutions, North America, VP of Marketing, Hank Monaco, and Senior National Director of Municipal Infrastructure and Smart Cities, Lisa Brown, about the results of the study, smart technology investments and the benefits of a holistic building strategy that integrates security and fire and life-safety systems with core building systems. Q: What is the most striking result from the survey, and what does it mean in the context of a building’s safety and security systems? The results show an increased understanding about the value of integrating safety and security systems with other building systems Hank Monaco: Investment in building system integration increased 23 percent in 2019 compared to 2018, the largest increase of any measure in the survey. When respondents were asked more specifically what systems they we planning to invest in over the next year, fire and life safety integration (61%) and security system integration (58%) were the top two priorities for organizations. The results show an increased understanding about the value of integrating safety and security systems with other building systems to improve overall operations and bolster capabilities beyond the intended function of an individual system. Q: The survey covers integration of fire, life safety and security systems as part of "smart building" systems. How do smarter buildings increase the effectiveness of security and life safety systems? Hank Monaco: A true “smart building” integrates all building systems – security, fire and life-safety, HVAC, lighting etc. – to create a connected, digital infrastructure that enables individual technologies to be more intelligent and perform more advanced functions beyond what they can do on their own. For example, when sensors and video surveillance are integrated with lighting systems, if abnormal activity is detected on the building premise, key stakeholders can be automatically alerted to increase emergency response time. With integrated video surveillance, they also gain the ability to access surveillance footage remotely to assess the situation. When sensors and video surveillance are integrated with lighting systems abnormal activity on the premise can automatically be detected Q: How can integrated security and life safety systems contribute to greater energy efficiency in a smart building environment? Hank Monaco: Security, fire and life-safety systems can help to inform other building systems about how a facility is used, high-trafficked areas and the flow of occupants within a building. Integrated building solutions produce a myriad of data that can be leveraged to increase operational efficiencies. From an energy efficiency standpoint, actionable insights are particularly useful for areas that are not frequently occupied or off-peak hours as you wouldn’t want to heat or cool an entire building for just one person coming in on the weekend. When video surveillance is integrated with HVAC and lighting systems, it can monitor occupancy in a room or hallway. The video analytics can then control the dimming of lights and the temperature depending on occupant levels in a specific vicinity. Similarly, when access control systems are integrated with these same systems, once a card is presented to the reader, it can signal the lights or HVAC system to turn on. In this example, systems integration can ultimately help enable energy savings in the long run. Security and life safety systems contribute to help enable greater energy efficiency and energy savings in the long run Q: What other benefits of integration are there (beyond the core security and life safety functions)? Hank Monaco: Beyond increased security, fire and life-safety functions, the benefits of systems integration include: Increased data and analytics to garner a holistic, streamlined understanding of how systems function and how to improve productivity Ability to track usage to increase efficiency and reduce operational costs Enhanced occupant experience and comfort Increased productivity and workflow to support business objectives Smart-ready, connected environment that can support future technology advancements Q: What lesson or action point should a building owner/operator take from the survey? How can the owner of an existing building leverage the benefits of the smart building environment incrementally and absent a complete overhaul? Lisa Brown: Johnson Controls Energy Efficiency Indicator found that 77% of organizations plan to make investments in energy efficiency and smarter building technology this year. This percentage demonstrates an increased understanding of the benefits of smart buildings and highlights the proactive efforts building owners are taking to adopt advanced technologies. There is an increased understanding that buildings operate more effectively when different building systems are connected As smart buildings continue to evolve, more facilities are beginning to explore opportunities to advance their own spaces. A complete overhaul of legacy systems is not necessary as small investments today can help position a facility to more easily adopt technologies at scale in the future. As a first step, it’s important for building owners to conduct an assessment and establish a strategy that defines a comprehensive set of requirements and prioritizes use-cases and implementations. From there, incremental investments and updates can be made over a realistic timeline. Q: What is the ROI of smart buildings? Lisa Brown: As demonstrated by our survey, there is an increased understanding that buildings operate more effectively when different building systems are connected. The advanced analytics and more streamlined data that is gathered through systems integration can provide the building-performance metrics to help better understand the return on investment (ROI) of the building systems. This data is used to better understand the environment and make assessments and improvements overtime to increase efficiencies. Moreover, analytics and data provide valuable insights into where action is needed and what type of return can be expected from key investments.

How To Enhance IoT Applications With Network Video Surveillance
How To Enhance IoT Applications With Network Video Surveillance

Remember the old adage “The whole is greater than the sum of its parts?” Nowhere is that truism more evident than when you add network video to the current generation of Internet of Things (IoT) solutions. Whether we’re talking about industrial IoT applications, “Smart – X” (city, building, parking etc.) or retail operations, integrating network video into the solution provides value far beyond simple situational awareness. Optimising Sophisticated Video Technology When video systems first moved from analog to digital and then became part of the IoT world, they were primarily used to provide visual validation of sensor-detected events. For instance, if an industrial controller sensed an environmental issue such as a temperature exceeding set threshold maximum limits, the sensor would trigger the management software to notify the operator that this event had occurred. The operator could then pull up the video feed of the closest camera and observe the area remotely. While this application is simple, it shows how video enhances sensor management.  As edge devices, such as sensors and network video become more intelligent, the interactions between systems are growing in sophistication and generating even greater value than each system could provide on its own.  To appreciate how these smart applications are being used to improve overall efficiencies and profitability, let’s delve into three areas where they’re being deployed: intelligent buildings, smart cities, and smart retailing.   By overlaying intelligent operational sensors with intelligent video, it’s now possible to automate lighting levels based on motion detection Video-based Operational Analytics Applying intelligent monitoring to environmental equipment (HVAC) makes it easy for building owners and property managers to determine existing operating costs based on current equipment performance. They can then compare that amount to the cost of upgrades and potential cost savings over time. Lighting is another significant operating cost within building management. By overlaying intelligent operational sensors with intelligent video (light sensors), it’s now possible to automate lighting levels based on motion detection. Lights can automatically turn on or off, brighten or dimmed, to eliminate wasteful energy consumption. With the addition of occupancy analytics via intelligent video, property managers can determine what caused the motion and learn other operational details such as occupancy counts. Did someone walk through and area causing lighting to turn on or up? Did they dwell in this area? These specifics can help managers efficiently optimize lighting controls and reduce the overall operating cost of the property. Businesses are also using smart applications to optimize allocation of desk space and conference areas. For instance, intelligent video can determine conference room occupancy (in use, number of people in room, free space even though showing booked) far better than stand-alone motion sensors. When tied to automated room assignment systems, the additional statistics provided by video analytics might suggest room changes based on room size and number of attendees through back-office applications such as Microsoft Outlook. These examples are just a few of a growing list of available video-based operational analytics currently on the market. Video Analytics In Smart Cities Initial forays into smart city technologies such as smart lighting, smart grid, smart parking and so on relied on standalone sensor technologies. Their capabilities were good but limited. Smart Lighting for instance would use basic light detectors to turn street lighting. Smart Parking and traffic systems would use weight sensors to trigger vehicle counts, traffic signal changes or determine if a parking space was in use and paid for. Augmenting these applications with intelligent video and analytics, however, opens up a whole new world of additional details. In Smart Lighting, the video sensor can now trigger a change in lighting based on rules such as vehicular and pedestrian events. Video analytics can yield additional metadata such as vehicle type (commercial versus public use). Smart Parking becomes much more effective when you can begin to provide vehicle detail such as vehicle type or other information based on license plate recognition. These additional details can help parking lots operate more efficiently and offer value-added services like space reservation and open space location notifications.  Augmenting smart city applications with intelligent video and analytics opens up a whole new world of additional details Smart Grid offers some less obvious but equally valuable system augmentation capabilities. We often associate Smart Grid with simple automated meter reading but these systems also traverse critical power infrastructure. Solution providers in this arena are now offering heightened asset and perimeter protection via integration of network-based radar detection with video and audio analytics. This strategic mix of technologies can be used to minimize false detection alarms, turn on/off or change lighting levels and point cameras to areas of interest for extremely effective and cost-effective perimeter security. Network video For Retail Intelligence Retailing was one of the earliest adopters of smart device integration with network video and video analytics to support loss prevention and customer safety. They’ve been using video to analyze customer traffic and behavior in order to improve product placement, increase product sales, as well as cross-sell related items. Adding programmable “Digital Signage” to the mix created new opportunities to display targeted messages based on viewer demographics about additional products and services of potential interest. Integrating network video with point-of-sale terminals to reconcile cash register receipts, adding heat mapping analytics to study customer foot traffic patterns, measuring check out wait times to increase employee productivity and efficiency as well as improve the customer experience are just some of the ways retailers have applied the principles of IoT to their advantage. Overlay intelligent building controls and you can see the exponential power of integrating intelligent video with other IoT devices and systems. Retailing was one of the earliest adopters of smart device integration with network video and video analytics to support loss prevention and customer safety Minimizing Metadata Overload Smart application integration produces an enormous amount of metadata. Collecting, transporting and synthesising this data into meaningful business intelligence can be daunting. It requires disciplined use of resources from the network infrastructure transporting the data locally to the various cloud technologies (private cloud, hybrid cloud, public cloud) storing and disseminating it securely.  Generally smart sensor data is fairly light weight in terms of actual data transmitted. Adding video elements can significantly increase bit-rate (bandwidth and storage) requirements. This highlights the need for the video to be more intelligent and interactive with the intelligent sensor and edge device technologies so that resources can be used more efficiently. Smart applications let you do that. You can fine tune video rules and optimize transmission based on retention value. You can program the video to sensor triggers or events, transmitting lower frame rate and resolution video for less interesting video and increasing the video settings when higher quality video is more relevant and valuable based on these sensor triggers. The back-end collectors of sensor metadata are becoming more mainstream and easier to operate.  In many sectors, service providers are offering management of this sensor output “As a Service.”  As smart IoT technology continues to mature, the benefits of integration between network video systems and other network solutions will only get better. We’re already seeing greater efficiency in operations as well as higher quantifiable returns on investment through cost savings and more in-depth, usable business intelligence.

Latest MESSOA Technologies Inc. news

Digital Watchdog DW Spectrum IPVMS V2.5 Video Management Software Adds New Storage And Performance Features
Digital Watchdog DW Spectrum IPVMS V2.5 Video Management Software Adds New Storage And Performance Features

Digital Watchdog (DW™), the industry leader in digital recorders, surveillance cameras and related management software, announces the release of the latest update for DW Spectrum™ IPVMS. The new v2.5 software adds powerful new features including a bookmarks engine and storage backup, performance improvements and improved support for multi-sensor cameras. Easy Approach To HD Surveillance DW Spectrum IPVMS is an elegantly easy cutting-edge approach to HD surveillance, addressing the primary obstacles and limitations of managing enterprise-level HD video while offering the lowest total cost of deployment and ownership of any solution on the market. The software offers advanced search features to help you quickly find incidents or instantly review an exact date and time. The software is cross-platform, installs quickly and provides instant network mapping and discovery to start viewing your entire security system in minutes. DW Spectrum IPVMS is a perfect solution for any application that requires ease, speed, efficiency, and unprecedented image quality. “With the timely release of DW Spectrum 2.5, it continues to deliver unprecedented return on investment without the need for an annual maintenance agreement.” said Patrick Kelley, Director of IP Sales – North America, Digital Watchdog. “These new features are seamlessly incorporated into the DW Spectrum user interface, providing a dramatically easier user experience for all user levels than any other video management solution on the market.” DW Spectrum™ IPVMS Features: New Mobile Apps - Brand new cross-platform mobile apps for iOS and Android with better performance, revamped design and consistent user experience across both Apple iOS and Google Android devices. Bookmarks - Users can create bookmarks for specific segments of archived video with names, descriptions, and tags either manually or via the Rules & Events engine. Storage Backup - Users can now set up scheduled or real-time archive backup of high-res, low-res, or all streams from selected cameras to local, NAS, or even cloud-based storage locations (e.g. ftp sites, Amazon Prime Storage, etc). PTZ Preset as an Action - Users can now set up rules to trigger a PTZ preset as an action (e.g. create a motion event on a fixed camera that triggers the PTZ to look at the spot where motion occurred). Alarm Layout - allows users to set display-camera-on-Alarm-Layout as an action (aka pop-up video on alarm). Live Video Text Overlay - allows users to create custom text overlays-as-an-action (including Generic Event API). New Device Support: Axis F44 Main Unit Axis Q6000E panoramic camera ACTi V23 4 Channel Encoder (with I/O Support) Messoa IP Cameras (with I/O Support) Hikvision DS-6704HFI 4 Channel Video Server Implemented "Advanced" Settings for DWC-BVI2IR cameras Improved support for DWC-PZV2M72T cameras Vista VK2-1080XVRDPTPMF camera now mapped for advanced PTZ Arecont RTSP camera support implemented Digital I/O support for Arecont cameras implemented Improvements To Management Software: Added "Connect" button to the "Test" dialog during dialog Updated viewing cell icons and improved styling for "info" data Calendar widget can now be pinned Added layout background support for video wall Transcoding is now enabled by default for video export from multi-sensor cameras (e.g. DWC-PZV2M72T) Added warning before export if export will result in video downscaling (applies only to very high resolution or multi-sensor cameras) "Timeline mode" renamed to "Time Mode". Change can be seen in timeline, timestamps in Event Logs, Audit Trail and Bookmark Log Added ability to sort Alarm/Event Rules by any column Improved "Server Settings" and "System Administration" dialogs - now changes can be applied without closing dialog Storage Analytics improvement - storage utilised by deleted/moved out cameras is displayed separately Storage usage optimisations and improvements Improved time synchronization mechanism between Servers Improved error messages for some cases of push updates failure "Free Storage Space" is increased from 5Gb to 50Gb for NAS   Server SSL can now be disabled API documentation is improved and extended General Server stability improvements based on anonymous usage and crash statistics

MESSOA Technologies Launches Industry’s First 3-megapixel IR Bullet LPR/ANPR Network Camera
MESSOA Technologies Launches Industry’s First 3-megapixel IR Bullet LPR/ANPR Network Camera

MESSOA Technologies Inc. recently announced the launch of the LPR606, the industry’s first 3-megapixel IR Bullet LPR/ANPR network camera. The newest addition to MESSOA’s existing IP traffic camera lineup was specifically engineered for overview and access control LPR applications at car parks, toll booths, gated communities, and a variety of low-speed environments. Designed with access control in mind, the LPR606 is ideal for applications of capturing vehicles with reflective license plates traveling at moderate speeds up to 60km/h. The 3MP resolution of the LPR606 allows for a much wider view and more details compared to VGA, covering up to 2 traffic lanes with just a single camera. Not only does it reduce the total cost of ownership, the camera delivers much enhanced image quality, which ensures plate recognition results are up to the high standards. The LPR606 is equipped with a 30m IR LED unit that generates adequate, even illumination needed for the high megapixel images at difficult lighting conditions. Thanks to MESSOA’s low light expertise and the camera’s LPR-oriented specifications, such as configurable shutter speed, iris, and illumination control, the LPR606 is able to deliver unparalleled imaging performance that yields superior LPR rates. Deployment-wise, the 3-axis cable management bracket and external lens adjustment significantly facilitates installation of this outdoor-ready LPR/ANPR camera. “We are excited to be the first one to provide a 3MP IP LPR camera to the market,” said Ervin Wang, Sales Director of MESSOA. “LPR application is becoming a more prevalent segment in video surveillance. It is vital to use cameras that are specifically designed for LPR and can offer reliably accurate capture at all times. The LPR606 is a revolutionizing solution that advances fixed LPR to a new IP era.” The LPR606 is duly compliant with the latest ONVIF standards and can be fully integrated with major LPR/ANPR platforms, such as Milestone and Genetec. It also comes with the SDK tool for easy integration with other 3rd party software. The LPR606 is available for sample orders now and scheduled for shipment in February.

MESSOA and NUUO to jointly showcase video management solutions at ISC East 2013
MESSOA and NUUO to jointly showcase video management solutions at ISC East 2013

The collaborated display will show enhanced image quality and system versatility MESSOA Technologies Inc. will be teaming up with NUUO to make its debut appearance at the upcoming ISC East on November 20 in New York City, USA. The two long-term partners together will showcase intelligent video management solutions that combine superior image quality and system versatility for various applications in front of the crowd. Through the ONVIF open-platform standards and SDK integrations, the NUUO NVR and software, ranging from the Titan Series to the NVRSolo Series, are seamlessly interoperated with MESSOA IP cameras, which include the following models: The PRO Series, 2MP models featuring superior HDTV video quality up to 30fps with H.264 codec support 5MP models delivering maximum detail for large covered areas Traffic cameras, such as 2MP LPR network camera NCH517 and CatchAll Technology embedded SCR505 The NIC900 Series Speed Dome, such as NIC990 featuring 1080p, 20X optical zoom, and WDR capability These models, featuring superior HDTV video quality and low light performance, will be showcased at the stand along with live demonstration. The collaborated display will show customers how they could benefit from the enhanced image quality and the system versatility provided by the two leading brands. Join us in the Big Apple where our sale representatives will be available for discussions on the stand. The NUUO-MESSOA booth will be located at Stand No. 301 in the brand new venue of Javits Center.