Telemetry transmitters and controllers - Expert commentary

Integrated Security Systems For Medium And Large-sized Offices
Integrated Security Systems For Medium And Large-sized Offices

If you’re responsible for a medium or large-sized office, it’s more important than ever that you have access to a means of ensuring people’s safety, managing risks and fraud, and protecting property. Any security system that you employ must therefore meet the most demanding commercial requirements of today’s offices, and tomorrow’s. This means thinking beyond a basic intrusion system and specifying a comprehensive solution that integrates smart features like access control, video management and intelligent video analytics. Because only then will you have security you can trust, and detection you can depend on. Reliable Entry Management Access control systems have been developed that guarantee reliable entry management for indoors and outdoors Access control is becoming increasingly important for ensuring the security of office buildings, but as the modern workplace evolves you’re unlikely to find a one-size-fits-all solution. Today, it’s commonplace to control entry to individual rooms or restricted areas and cater to more flexible working hours that extend beyond 9 to 5, so a modern and reliable access control system that exceeds the limitations of standard mechanical locks is indispensable. Access control systems have been developed that guarantee reliable entry management for indoors and outdoors. They use state-of-the-art readers and controllers to restrict access to certain areas, ensuring only authorized individuals can get in. With video cameras located within close proximity you can then monitor and record any unauthorized access attempts. The system can also undertake a people-count to ensure only one person has entered using a single pass. Scalable Hardware Components As previously mentioned, there is no one-size-fits-all system, but thanks to the scalability of the hardware components, systems can adapt to changing security requirements. For example, you can install Bosch’s Access Professional Edition (APE) software for small to medium-sized offices, then switch to the more comprehensive Access Engine (ACE) of the Building Integration System (BIS) when your security requirements grow. And, because the hardware stays the same, any adaptations are simple. APE’s ‘permanent open’ functionality allows employees and guests to enter designated areas easily and conveniently The APE software administers up to 512 readers, 10,000 cardholders and 128 cameras, making it suitable for small to medium-sized buildings. With functions like badge enrollment, entrance control monitoring and alarm management with video verification it provides a high level of security and ensures only authorized employees and visitors are able to enter certain rooms and areas. Of course, there will always be situations when, for convenience, you need certain doors to be permanently open, such as events and open days. APE’s ‘permanent open’ functionality allows employees and guests to enter designated areas easily and conveniently. Growing Security Needs You switch to the Bosch Building Integration System (BIS), without having to switch hardware (it stays the same, remember?). This is a software solution that manages subsystems like access control, video surveillance, fire alarm, public address or intrusion systems, all on a single platform. It is designed for offices with multiple sites and for large companies with a global presence. Bosch Building Integration System (BIS) manages subsystems like access control, video surveillance, fire alarm, public address or intrusion systems, all on a single platform The BIS Access Engine (ACE) administers up to 10,000 readers and 80 concurrent workplace clients per server, and 200,000 cardholders per AMC. An additional benefit to security officers is the ability to oversee cardholders and authorizations through the central cardholder management functionality and monitor all access events and alarms from every connected site. For consistency, multi-site cardholder information and access authorizations can be created on a central server and replicated across all connected site servers, which means the cardholder information is always up to date and available in every location. Intrusion Alarm Systems Bosch B Series and G Series intrusion control panels can also send personal notifications via text or email Securing all perimeter doors is vital when protecting employees, visitors and intellectual property. Doors are opened and closed countless times during business hours, and when intentionally left open, your office is vulnerable to theft, and the safety of your employees is compromised. For this reason, intrusion control panels have been developed with advanced features to ensure all perimeter doors are properly closed, even when the system is not armed. If a door remains open for a period of time (you can specify anything from one second to 60 minutes), the system can be programmed to automatically take action. For example, it can activate an audible alert at the keypad to give employees time to close the door. Then, if it is still not closed, it will send a report to a monitoring center or a text directly to the office manager, and when integrated with video it can even send an image of the incident to a mobile device. Customized Intrusion Systems What about people who need to access your building outside of working hours, like cleaning crews? Your intruder system allows you to customize the way it operates with a press of a button or swipe of a card. This level of control enables you to disarm specific areas, bypass points and unlock doors for cleaning crews or after-hours staff, whilst keeping server rooms, stock rooms and executive offices safe and secure. Bosch B Series and G Series intrusion control panels can also send personal notifications via text or email. You can program the panel to send you opening, closing, and other event alerts, which means you don’t have to be on-site to keep track of movements in and around your facility. Video Management System A video management system will add a next level of security to your access control system Every office building has different video security requirements depending on the location, size and nature of the business. Some offices may only need basic functions such as recording and playback, whereas others may need full alarm functionalities and access to different sites. A video management system will add a next level of security to your access control system. For example, the video system can provide seamless management of digital video, audio and data across IP networks for small to large office buildings. It is fully integrated and can be scaled according to your specific requirements. The entry-level BVMS Viewer is suitable for small offices that need to access live and archived video from their recording solutions. With forensic search it enables you to access a huge recording database and scan quickly for a specific security event. For larger offices, embellished security functions for the BVMS Professional version can manage up to 2,000 cameras and offers full alarm and event management Full Alarm And Event Management For larger offices, embellished security functions for the BVMS Professional version can manage up to 2,000 cameras and offers full alarm and event management. It’s also resilient enough to remain operative should both Management and Recording Servers fail. Large multi-national companies often need access to video surveillance systems at numerous sites, which is why BVMS Professional allows you to access live and archived video from over 10,000 sites across multiple time zones from a single BVMS server. When integrated with the BVMS Enterprise version multiple BVMS Professional systems can be connected so every office in the network can be viewed from one security center, which provides the opportunity to monitor up to 200,000 cameras, regardless of their location. Essential Video Analytics Video analytics acts as the brain of your security system, using metadata to add sense and structure to any video footage you capture If your strategy is to significantly improve levels of security, video analytics is an essential part of the plan. It acts as the brain of your security system, using metadata to add sense and structure to any video footage you capture. In effect, each video camera in your network becomes smart to the degree that it can understand and interpret what it is seeing. You simply set certain alarm rules, such as when someone approaches a perimeter fence, and video analytics alerts security personnel the moment a rule is breached. Smart analytics have been developed in two formats. Essential Video Analytics is ideal for small and medium-sized commercial buildings and can be used for advanced intrusion detection, such as loitering alarms, and identifying a person or object entering a pre-defined field. It also enables you to instantly retrieve the right footage from hours of stored video, so you can deal with potential threats the moment they happen. Essential Video Analytics also goes beyond security to help you enforce health and safety regulations such as enforcing no parking zones, detecting blocked emergency exits or ensuring no one enters or leaves a building via an emergency exit; all measures that can increase the safety of employees and visitors inside the building. Intelligent Video Analytics Intelligent Video Analytics have the unique capability of analyzing video content over large distances Intelligent Video Analytics have the unique capability of analyzing video content over large distances, which makes it ideally suited to more expansive office grounds or securing a perimeter fence. It can also differentiate between genuine security events and known false triggers such as snow, rain, hail and moving tree branches that can make video data far more difficult to interpret. The final piece in your security jigsaw is an intelligent camera. The latest range of Bosch ’i’ cameras have the image quality, data security measures, and bitrate reduction of <80%. And, video analytics is standard. Be prepared for what can’t be predicted. Although no-one can fully predict what kind of security-related event is around the corner, experience and expertise will help make sure you’re always fully prepared.

Why Live Video Streaming Is Critical For Safer And Smarter Cities
Why Live Video Streaming Is Critical For Safer And Smarter Cities

The term “smart city” gets thrown around a lot nowadays, but as different technologies that strive to be defined in this way are adopted by different countries globally, the meaning of this phrase gets lost in translation. The simplest way to define a “smart city” is that it is an urban area that uses different types of data collecting sensors to manage assets and resources efficiently. One of the most obvious types of “data collecting sensor” is the video camera, whether that camera is part of a city’s existing CCTV infrastructure, a camera in a shopping mall or even a police car’s dash camera. The information gathered by video cameras can be used with two purposes in mind, firstly: making people’s lives more efficient, for example by managing traffic, and secondly (and arguably more importantly): making people’s lives safer. Live Streaming Video All The Time, Everywhere In the smart and safe city, traditional record-only video cameras are of limited use. Yes, they can be used to collect video which can be used for evidence after a crime has taken place, but there is no way that this technology could help divert cars away from an accident to avoid traffic building up, or prevent a crime from taking place in the first place. However, streaming live video from a camera that isn’t connected to an infrastructure via costly fiber optic cabling has proven challenging for security professionals, law enforcement and city planners alike. This is because it isn’t viable to transmit video reliably over cellular networks, in contrast to simply receiving it. Video Transmission Challenges Transmitting video normally results in freezing and buffering issues which can hinder efforts to fight crime and enable flow within a city, as these services require real-time, zero latency video without delays. Therefore, special technology is required that copes with poor and varying bandwidths to allow a real-time view of any scene where cameras are present to support immediate decision making and smart city processes. The information gatheredby video cameras can beused to make people’s lives more efficient, and to make people’s lives safer There are many approaches to transmitting video over cellular. We’ve developed a specialist codec (encoding and decoding algorithm) that can provide secure and reliable video over ultra-low bandwidths and can therefore cope when networks become constrained. Another technique, which is particularly useful if streaming video from police body worn cameras or dash cams that move around, is to create a local wireless “bubble” at the scene, using Wi-Fi or mesh radio systems to provide local high-bandwidth communications that can communicate with a central location via cellular or even satellite communications. Enhanced City Surveillance Live video streaming within the smart and safe city’s infrastructure means that video’s capabilities can go beyond simple evidence recording and evolve into a tool that allows operations teams to monitor and remediate against incidents as they are happening. This can be taken one step further with the deployment of facial recognition via live streaming video. Facial recognition technology can be added on to any video surveillance camera that is recording at a high enough quality to identify faces. The technology works by capturing video, streaming the live video back to a control center and matching faces against any watch lists that the control center owns. Importantly, the data of people who aren’t on watch lists is not stored by the technology. Identifying Known Criminals This technology can work to make the city safer in a number of ways. For example, facial recognition could spot a known drug dealer in a city center where they weren’t supposed to be, or facial recognition could identify if a group of known terror suspects were visiting the same location at the same time, and this would send an alert to the police. Facial recognition technology captures and streams live back to a controll center, matching faces against any watch lists that the control center owns In an ideal world where the police had an automated, electronic workflow, the police officer nearest to the location of the incident would be identified by GPS and would be told by the control room where to go and what to do. Most police forces aren’t quite at this technological level yet, and would probably rely on communicating via radio in order to send the nearest response team to the scene. As well as this, shopping malls could create a database from analog records of known shoplifters to identify criminals as soon as they entered the building. This would be even more effective if run co-operatively between all shopping malls and local businesses in an area, and would not only catch any known shoplifters acting suspiciously, but would act as a deterrent from shoplifting in the first place. Live Streaming For Law Enforcement As mentioned above, live streaming video from CCTV cameras can help the police fight crime more proactively rather than reactively. This can be enhanced even further if combined with live streaming video from police car dash cams and police body worn cameras. If video was streamed from all of these sources to a central HQ, such as a police operations center, the force would be able to have full situational awareness throughout an incident. This would mean that, if need be, officers could be advised on the best course of action, and additional police or other emergency services could be deployed instantly if needed. Incorporated with facial recognition, this would also mean that police could instantly identify if they were dealing with known criminals or terrorists. While they would still have to confirm the identity of the person with questioning or by checking their identification, this is still more streamlined than describing what a person looks like over a radio and then ops trying to manually identify if the person is on a watch list. The smart, safe city is possible today – for one, if live video streaming capabilities are deployed they can enable new levels of flow in the city. With the addition of facial recognition, cities will be safer than ever before and law enforcement and security teams will be able to proactively stop crime before it happens by deterring criminal activity from taking place at all.

Drone Terror: How To Protect Facilities And People
Drone Terror: How To Protect Facilities And People

The use of drones has increased dramatically in the last few years. Indeed, by 2021, the FAA says the number of small hobbyist drones in the U.S. will triple to about 3.55 million. With that growth, drone capabilities have increased while costs have decreased. For example, the DJI Phantom 4 can deliver a 2-pound payload to a target with 1.5m accuracy from 20 miles away for the less than $1000.00. This is an unprecedented capability accessible to anyone. This new technology has created an entirely new security risk for businesses and governments. Drone Security Risks Already, rogue groups such as ISIS have used low cost drones to carry explosives in targeted attacks. Using this same method, targeting high profile locations within our borders to create terror and panic is very possible. Security professionals and technologists are working furiously to address the gaps in drone defense. Currently, the most common technologies in use for drone detection are video, acoustic sensors, radio, and air surveillance radar. Each of these has advantages, but they also have flaws that make it difficult to detect drones in all conditions. Both optical and thermal cameras, as well as acoustic sensors, do not operate in severe weather such as fog and snow. And while radio and air surveillance radar cover a wide area of detection, they suffer from high installation costs and limiting technical challenges, such as being unable to detect low flying drones on autopilot. Compact Surveillance Radar (CSR) Compact Surveillance Radar (CSR) is a security technology addressing the problems with other types of detection. CSR, like traditional radar, has the benefit of being able to detect and track foreign objects in all weather conditions, but at a fraction of the size and cost. The compact size allows the radar to be mounted on existing structures or even trees, providing extensive perimeter defense almost anywhere that you can imagine. CSR can also filter out clutter such as birds by using an advanced algorithm reducing the number of false alarms. While the use of CSR and the other detection technologies are legal in the US and in most locations throughout the world, the response mechanisms are generally not. Current regulations in the US prohibit the use of jamming or GPS spoofing in all cases except for a few federal agencies Regulations Limiting Drones Current regulations in the US prohibit the use of jamming or GPS spoofing in all cases except for a few federal agencies. This makes it difficult to stop the damage that drones can cause. The FAA has put into place new regulations that limit some uses of drones. However, in most cases it is still illegal for even state or local governments to stop or interfere with drones other than to locate the operator and have them land the drone. In 2016 the first law to neutralize a drone in the United States was passed in Utah to respond to drones in wildfire areas because of their interference with airborne firefighting. This law may very well provide a model for other states dealing with drones in situations where people’s lives are being put at risk by drones. At the federal level, much effort is being put into evaluating the regulations and technology surrounding the misuse of drones. In the 2016 reauthorization bill for the FAA, Section 2135 included a pilot program for the investigation of methods to mitigate the threat of unmanned aircraft around airports and other critical infrastructure. There are many federal agencies that are evaluating the use of a variety of technologies to respond to this threat. Both optical and thermal cameras, as well as acoustic sensors, do not operate in severe weather such as fog and snow   Effective Countermeasure Technologies The most effective countermeasure for drones is jamming, currently off-limits to the private sector. This includes stadiums, convention centers, and other large gathering areas. A number of companies are developing new response technologies that do not require the use of jammers or hacking. Several companies have developed net guns that shoot a net at an approaching drone. These are only effective at less than 100m and frequently miss the target, especially when the drone is approaching at high speed. Several other companies have taken this method a step further, with drones that capture other drones. Once a radar detects a drone, another defense drone is launched and flies to the point of detection. Then, using video analytics it homes in on the drone and fires a net to disable the drone and take it to a safe location. While this drone capturing technique is still in its infancy, it shows a great deal of promise and will not be restricted in the same fashion as jamming. However, even this solution is difficult under current regulations, as all commercial drones in the US must be under direct control of a human operator within their line of sight. This effectively means that a drone operator is required to be on-site at all times to protect a facility, event, or persons. One thing is for certain, technology will continue to adapt and security companies will continue to invent new methods to protect their facilities and the people they are sworn to protect.

Latest FLIR Systems news

FLIR Highlights The Applications Of Thermal Technology In Security, Safety, And Equipment Protection
FLIR Highlights The Applications Of Thermal Technology In Security, Safety, And Equipment Protection

The Insights from the Field series features insight from FLIR experts who recommend, deploy, and use thermal imaging technology every day. FLIR discusses the diverse applications of thermal technology in security, safety, and equipment protection for critical infrastructure. Epidemics and pandemics can leave large enterprises that employ and receive thousands of people vulnerable to widespread infection and business interruptions. Without the right entry protocols in place, an employee who has symptoms of an infectious disease, such as a fever, could enter a facility and put the entire workforce at risk of exposure. Skin temperature screening Elevated Skin Temperature Screening Major businesses are ramping up their workforce safety best practices by deploying FLIR thermal cameras for elevated skin temperature measurement. Registered with the U.S. Food and Drug Administration (FDA), these non-contact thermal cameras measure skin surface temperature at the inner canthus (or corner of a person's eye). FLIR thermal cameras that are engineered for elevated skin temperature screening can achieve accuracies of ±0.3°C FLIR thermal cameras that are engineered for elevated skin temperature screening can achieve accuracies of ±0.3°C (0.5°F) over a temperature measurement range of 15°C to 45°C (59°F to 113°F). This aligns with the U.S. FDA Guidance for Industry and Food and Drug Administration Staff as well as with ISO/TR 13154 specification. FLIR provides an array of cameras for elevated skin temperature screening in multiple form factors—including handheld, tripod mounted, or fixed-mounted—optimized for a variety of application needs. Measuring body temperature Infrared thermography can detect elevated skin temperatures, which may indicate the presence of a fever. When followed by a screening with a medical device designed specifically for measuring body temperature, such as a thermometer, the use of an infrared camera as an adjunctive diagnostic tool may help contain or limit the spread of viral diseases such as bird flu, swine flu, or COVID-19. In the wake of COVID-19, businesses across the critical infrastructure market rapidly adopted thermal cameras for elevated skin temperature screening. In the utilities sector, the Office of Cybersecurity, Energy Security and Emergency Response notes how energy utilities are updating their entry protocols in response to COVID-19. Practices now include wellness questionnaires to check for symptoms as well as temperature checks conducted through tools such as thermal cameras. Screening all patients GM deployed 377 FLIR thermal cameras across 72 sites to help limit the spread of COVID-19 General Motors (GM) is one of the manufacturers of motor vehicles, has over 85,000 employees in the United States, and has some plants that employ 1,000 people in a given shift. In May 2020, GM deployed 377 FLIR thermal cameras across 72 sites to help limit the spread of COVID-19. Healthcare facilities are also installing FLIR solutions; for example, the VA Medical Center in Manchester, New Hampshire deployed FLIR thermal cameras to screen all patients and staff for elevated skin temperature prior to them entering the building. In the transportation sector, Emirates airlines deployed FLIR thermal cameras at departure gates for all U.S. gateways beginning in March 2020. Guests traveling on U.S. bound flights out of the Dubai International Airport are screened for elevated skin temperature. Radiometric thermal cameras As more critical infrastructure organizations deploy thermal cameras for elevated skin temperature screening, they will likely prompt greater long-term adoption and integration of radiometric thermal cameras into the overall security and safety solution. Here’s why. While temperature screening of employees and guests often falls under the purview of Environmental Health and Safety or Occupational Health and Safety teams, not every business has a dedicated EHS or OHS staff. As a result, many organizations are tasking their security teams to vet and implement screening solutions. Security officers as well as security equipment, such as surveillance cameras and metal detectors, are already in place at key entry points in a facility. As a result, many security officers must play a dual role as the frontline personnel required to use handheld or tripod mounted thermal cameras to conduct elevated skin temperature screening. Video surveillance solutions It’s important to use a high-resolution thermal camera for elevated skin temperature screening Adding a thermal camera for elevated skin temperature screening is a logical addition to existing video surveillance solutions. As critical infrastructure businesses shift their attention toward the long-term implementation of thermal cameras for elevated skin temperature screening, there are multiple deployment practices to consider. Here are the a few recommendations from FLIR’s team of experts. Choose a Certified Camera – To ensure optimal reliability and deployment success, choose a thermal camera specifically designed for elevated skin temperature screening with a 510(k) filing (K033967) with the U.S. Food and Drug Administration. When looking to integrate this thermal camera into an existing video management system, make sure the camera is ONVIF-compliant. Other screening standards should be considered including ISO/TR 13154:2017 and IEC 80601-2-59:2017. Select a Camera with High Resolution – It’s important to use a high-resolution thermal camera for elevated skin temperature screening so one can capture the right pixels to yield accurate readings. Delivering consistent measurements Ensure Proper Distance for Screening – Distance matters. Make sure the camera is placed at the manufacturer’s recommended distance away from the individual so the camera can focus. Ensure the camera is stabilized so that the camera will deliver consistent measurements. Place a neutral backdrop a few feet behind the location where the person will be screened, and only screen one person at a time to identify temperature anomalies. It is more susceptible to environmental interferences and more likely to generate measurement errors Measure the Right Spot – While the forehead is easier to quickly screen, it is more susceptible to environmental interferences and more likely to generate measurement errors. Research has shown that the corner of the eye—the region medially adjacent to the inner canthus—provides a more accurate estimate of core body temperature than other areas of skin. Specific skin temperature This is because skin at the canthi is thin (decreasing insulating effects), is less exposed to environmental factors, and is directly over major arteries which increase blood flow and heat transfer. Set an Alarm Threshold – For FLIR cameras with a Screen-EST™ mode, set an alarm upon detection of a specific skin temperature compared against a sample average of temperature value. Because skin temperature can vary multiple degrees throughout the day based on the environment and other factors, FLIR Screen-EST mode gathers temperatures from several individuals to determine an average that can be updated throughout the screening operation. This is a defining feature and capability for the FLIR cameras for elevated skin temperature screening.

Teledyne Technologies Incorporated And FLIR Systems Announce Their Agreement For FLIR’s Acquisition Through A Cash And Stock Transaction
Teledyne Technologies Incorporated And FLIR Systems Announce Their Agreement For FLIR’s Acquisition Through A Cash And Stock Transaction

Teledyne Technologies Incorporated (“Teledyne”) and FLIR Systems, Inc. (“FLIR”) jointly announced that they have entered into a definitive agreement under which Teledyne will acquire FLIR in a cash and stock transaction valued at approximately $8.0 billion. “FLIR’s commitment to innovation spanning multiple sensing technologies has allowed our company to grow into the multi-billion-dollar company it is today”. Permanent financing Under the terms of the agreement, FLIR stockholders will receive $28.00 per share in cash and 0.0718 shares of Teledyne common stock for each FLIR share, which implies a total purchase price of $56.00 per FLIR share based on Teledyne’s 5-day volume weighted average price. The transaction reflects a 40% premium for FLIR stockholders based on FLIR’s 30-day volume weighted average price. Net leverage at closing is expected to be 4.0x adjusted pro forma EBITDA with leverage declining to less than 3.0x As part of the transaction, Teledyne has arranged a $4.5 billion 364-day credit commitment to fund the transaction and refinance certain existing debt. Teledyne expects to fund the transaction with permanent financing prior to closing. Net leverage at closing is expected to be approximately 4.0x adjusted pro forma EBITDA with leverage declining to less than 3.0x. Different semiconductor technologies Teledyne expects the acquisition to be immediately accretive to earnings, excluding transaction costs and intangible asset amortisation, and accretive to GAAP earnings in the first full calendar year following the acquisition. “At the core of both our companies is proprietary sensor technologies. Our business models are also similar: we each provide sensors, cameras and sensor systems to our customers. However, our technologies and products are uniquely complementary with minimal overlap, having imaging sensors based on different semiconductor technologies for different wavelengths,” said Robert Mehrabian, Executive Chairman of Teledyne. Multiple sensing technologies “For two decades, Teledyne has demonstrated its ability to compound earnings and cash flow consistently and predictably. Together with FLIR and an optimized capital structure, I am confident we shall continue delivering superior returns to our stockholders.” We could not be more excited to join forces with Teledyne through this value-creating transaction" “FLIR’s commitment to innovation spanning multiple sensing technologies has allowed our company to grow into the multi-billion-dollar company it is today,” said Earl Lewis, Chairman of FLIR. “With our new partner’s platform of complementary technologies, we will be able to continue this trajectory, providing our employees, customers and stockholders even more exciting momentum for growth. Our Board fully supports this transaction, which delivers immediate value and the opportunity to participate in the upside potential of the combined company.” Global customer base Jim Cannon, President and Chief Executive Officer of FLIR, said, “We could not be more excited to join forces with Teledyne through this value-creating transaction. Together, we will offer a uniquely complementary end-to-end portfolio of sensory technologies for all key domains and applications across a well-balanced, global customer base." "We are pleased to be partnering with an organization that shares our focus on continuous innovation and operational excellence, and we look forward to working closely with the Teledyne team as we bring our two companies together to capitalize on the important opportunities ahead.” Approvals and timing Teledyne announced improved preliminary financial results for the fourth quarter and full year 2020 In a separate press release issued, Teledyne announced improved preliminary financial results for the fourth quarter and full year 2020. The Teledyne press release is available on the company’s official website. FLIR noted that it expects to meet or exceed the full year fiscal 2020 guidance it provided on October 30, 2020. The transaction, which has been approved by the boards of directors of both companies, is expected to close in the middle of 2021 subject to the receipt of required regulatory approvals, including expiration or termination of the applicable waiting period under the Hart-Scott-Rodino Antitrust Improvements Act, approvals of Teledyne and FLIR stockholders and other customary closing conditions. Conference call and webcast Evercore is acting as exclusive financial advisor and McGuireWoods LLP is acting as legal advisor to Teledyne in connection with the transaction. Goldman Sachs & Co. LLC is acting as exclusive financial advisor and Hogan Lovells US LLP is acting as legal advisor to FLIR in connection with the transaction. Teledyne has entered into a 364-day senior unsecured bridge facility credit agreement with Bank of America as sole lead arranger and administrative agent. Teledyne and FLIR will host a conference call to discuss the acquisition. A live webcast of the call can be accessed at Teledyne’s website. One can connect to the website at least 15 minutes prior to the start of the call to allow adequate time for any software download that may be required. A replay will be available on the company’s website approximately three hours after the call and will be available for approximately one month.

FLIR Systems Develops Deep Learning Facemask Detection Prototype In Two Days
FLIR Systems Develops Deep Learning Facemask Detection Prototype In Two Days

Facemasks are a critical tool for fighting the spread of COVID-19 virus and are proven to be most effective when face coverings are worn universally. As stores and businesses reopen, ensuring all occupants wear a facemask is essential. However, the additional resources required to monitor patrons can further strain businesses already struggling to meet other sanitation and social distancing guidelines. Deep Learning solutions are capable of automatically detecting anyone in violation of facemask guidelines, saving employee time and ensuring safer environments. Deploying Deep Learning solutions Deep learning is a form of machine learning that uses neural networks with many ‘deep’ layers between the input and output nodes. By training a network on a large data set, a model is created that can be used to make accurate predictions based on unseen data. In this case, the network can be trained to detect not only facemasks, but if a facemask is worn correctly on a person’s face. A fully functioning deep learning system can be developed and deployed in a matter of days A fully functioning deep learning system can be developed and deployed in a matter of days. Using a FLIR Firefly DL camera, FLIR Systems’ engineers developed a system for detecting compliance and flagging users who may be in violation of PPE (Personal Protection Equipment) guidelines. Facemask detection dataset The facemask detection dataset used 2 publicly available libraries with over 1000 images to provide examples of people with, without, and incorrectly wearing facemasks in different environments. Other cameras suited for this purpose include the Blackfly S GigE. Each image in the facemask dataset was annotated with bounding boxes showing object locations and class labels indicating which faces had the mask on, which did not, and if they were worn appropriately. Deep learning developers and solution integrators can easily expand this solution to cover more complex and robust use cases for deployment in the real world. For example, the neural network can be trained to detect face shields, gowns, gloves, and other PPE within high risk/high traffic environments like hospitals and airports.