Recognizing the need for emerging applications to build on a strong foundation that supports interoperability among all categories of devices, four sponsor members – The ASSA ABLOY Group which includes HID Global, and NXP Semiconductors, Samsung Electronics, and Bosch, leading companies in access, secure connectivity and mobile/CE device solutions – announced the launch of the FiRa Consortium.

The new coalition is designed to grow the Ultra-Wideband (UWB) ecosystem so new use cases for fine ranging capabilities can thrive, ultimately setting a new standard in seamless user experiences. Sony Imaging Products & Solutions Inc., LitePoint and the Telecommunications Technology Association (TTA) are the first companies to join the newly-formed organization.

Delivers unprecedented accuracy

UWB technology outperforms other technologies in terms of accuracy, power consumptionThe FiRa name, which stands for ‘Fine Ranging’, highlights UWB technology’s unique ability to deliver unprecedented accuracy when measuring the distance or determining the relative position of a target.  Especially in challenging environments, UWB technology outperforms other technologies in terms of accuracy, power consumption, robustness in RF connection, and security, by a wide margin.

As an industry consortium, we believe UWB technology can transform the way people experience connectivity, and we’re committed to the widespread adoption of interoperable UWB technologies,” says Charlie Zhang, Chair of the FiRa Consortium and VP Engineering, Samsung Electronics.

The starting point for UWB technology is the IEEE standard 802.15.4/4z, which defines the essential characteristics for low-data-rate wireless connectivity and enhanced ranging. It is the aim of the FiRa Consortium to build on what the IEEE has already established, by developing an interoperability standard based on the IEEE’s profiled features, defining mechanisms that are out of scope of the IEEE standard, and pursuing activities that support rapid development of specific use cases.

Usage of UWB technology in multiple areas 

The unique capabilities of UWB promise to make it an essential technology in many areas including:

  • Seamless Access Control – UWB can identify an individual’s approach towards or away from a secured entrance, verify security credentials, and let the authorized individual pass through the entrance without physically presenting the credential.
  • Location-Based Services – UWB offers highly precise positioning, even in congested multipath signal environments, making it easier to navigate large venues such as airports and shopping malls or find a car in a multi-story parking garage. It also enables targeted digital marketing campaigns and foot traffic data. Retailers can present customized offers, government agencies can tailor their notifications, and entertainment venues can personalize recommendations during events.
  • Device-to-Device (Peer-to-Peer) Services – By providing precise relative distance and direction between two devices, UWB lets devices find the relative location of each other even without infrastructures such as anchors or access points. This allows people to easily find one another in crowded spaces or find items even when placed in hidden areas. 

Suited for use with NFC, Bluetooth and Wi-Fi

UWB is well suited for use with other wireless technologies, including NFC, Bluetooth, and Wi-FiDue to its low power spectral density, UWB offers little to no interference with other wireless standards, so it is well suited for use with other wireless technologies, including Near Field Communication (NFC), Bluetooth, and Wi-Fi. There are also adjacent markets that leverage UWB in other ways, especially automotive. “The FiRa Consortium’s commitment to a complete ecosystem means we will work with other consortia and industry players to develop approaches and define parameters,” says Charles Dachs, Vice-Chair of the FiRa Consortium and GM & VP Secure Embedded Transactions, NXP Semiconductors.

FiRa Consortium members will have the chance to influence industry trends, gain early access to technical details, certify interoperable products, expand the UWB ecosystem, and share expertise. Ramesh Songukrishnasamy, Director and Treasurer of the FiRa Consortium, and SVP & CTO of HID Global says, “We encourage anyone, from any relevant industry area, who has a vested interest in the success of UWB to join us and contribute to the Consortium’s work.

Fully-Integrated UWB test solution

Kazuyuki Sakamoto, Senior General Manager, FeliCa Business Division, Sony Imaging Products & Solutions Inc. says, “We believe that UWB technology will bring the new benefit of connectivity to industries along with other wireless technologies.

Device-to-device fine ranging technology without additional equipment is very useful for home or industrial applications""UWB opens up new and complementary wireless connectivity use-cases,” said Adam Smith, Director of Marketing at LitePoint. “We're excited to help establish an ecosystem in which companies can utilize these new technologies by providing a fully-integrated UWB test solution, making it simple to validate the performance of UWB devices. At LitePoint, our mission is to help companies bring cutting-edge UWB products to market and that’s why we’re pleased to be part of the FiRa Consortium team.

Yongbum Park, Vice President, Telecommunications Technology Association says, “Device-to-device fine ranging technology without additional equipment is very useful for home or industrial applications. We believe that FiRa technology will change our lives.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

Water Plant Attack Emphasizes Cyber’s Impact On Physical Security
Water Plant Attack Emphasizes Cyber’s Impact On Physical Security

At an Oldsmar, Fla., water treatment facility on Feb. 5, an operator watched a computer screen as someone remotely accessed the system monitoring the water supply and increased the amount of sodium hydroxide from 100 parts per million to 11,100 parts per million. The chemical, also known as lye, is used in small concentrations to control acidity in the water. In larger concentrations, the compound is poisonous – the same corrosive chemical used to eat away at clogged drains. The impact of cybersecurity attacks The incident is the latest example of how cybersecurity attacks can translate into real-world, physical security consequences – even deadly ones.Cybersecurity attacks on small municipal water systems have been a concern among security professionals for years. The computer system was set up to allow remote access only to authorized users. The source of the unauthorized access is unknown. However, the attacker was only in the system for 3 to 5 minutes, and an operator corrected the concentration back to 100 parts per million soon after. It would have taken a day or more for contaminated water to enter the system. In the end, the city’s water supply was not affected. There were other safeguards in place that would have prevented contaminated water from entering the city’s water supply, which serves around 15,000 residents. The remote access used for the attack was disabled pending an investigation by the FBI, Secret Service and Pinellas County Sheriff’s Office. On Feb. 2, a compilation of breached usernames and passwords, known as COMB for “Compilation of Many Breaches,” was leaked online. COMB contains 3.2 billion unique email/password pairs. It was later discovered that the breach included the credentials for the Oldsmar water plant. Water plant attacks feared for years Cybersecurity attacks on small municipal water systems have been a concern among security professionals for years. Florida’s Sen. Marco Rubio tweeted that the attempt to poison the water supply should be treated as a “matter of national security.” “The incident at the Oldsmar water treatment plant is a reminder that our nation’s critical infrastructure is continually at risk; not only from nation-state attackers, but also from malicious actors with unknown motives and goals,” comments Mieng Lim, VP of Product Management at Digital Defense Inc., a provider of vulnerability management and threat assessment solutions.The attack on Oldsmar’s water treatment system shows how critical national infrastructure is increasingly becoming a target for hackers as organizations bring systems online “Our dependency on critical infrastructure – power grids, utilities, water supplies, communications, financial services, emergency services, etc. – on a daily basis emphasizes the need to ensure the systems are defended against any adversary,” Mieng Lim adds. “Proactive security measures are crucial to safeguard critical infrastructure systems when perimeter defenses have been compromised or circumvented. We have to get back to the basics – re-evaluate and rebuild security protections from the ground up.” "This event reinforces the increasing need to authenticate not only users, but the devices and machine identities that are authorized to connect to an organization's network,” adds Chris Hickman, Chief Security Officer at digital identity security vendor Keyfactor. “If your only line of protection is user authentication, it will be compromised. It's not necessarily about who connects to the system, but what that user can access once they're inside. "If the network could have authenticated the validity of the device connecting to the network, the connection would have failed because hackers rarely have possession of authorized devices. This and other cases of hijacked user credentials can be limited or mitigated if devices are issued strong, crypto-derived, unique credentials like a digital certificate. In this case, it looks like the network had trust in the user credential but not in the validity of the device itself. Unfortunately, this kind of scenario is what can happen when zero trust is your end state, not your beginning point." “The attack on Oldsmar’s water treatment system shows how critical national infrastructure is increasingly becoming a target for hackers as organizations bring systems online for the first time as part of digital transformation projects,” says Gareth Williams, Vice President - Secure Communications & Information Systems, Thales UK. “While the move towards greater automation and connected switches and control systems brings unprecedented opportunities, it is not without risk, as anything that is brought online immediately becomes a target to be hacked.” Operational technology to mitigate attacks Williams advises organizations to approach Operational Technology as its own entity and put in place procedures that mitigate against the impact of an attack that could ultimately cost lives. This means understanding what is connected, who has access to it and what else might be at risk should that system be compromised, he says. “Once that is established, they can secure access through protocols like access management and fail-safe systems.”  “The cyberattack against the water supply in Oldsmar should come as a wakeup call,” says Saryu Nayyar, CEO, Gurucul.  “Cybersecurity professionals have been talking about infrastructure vulnerabilities for years, detailing the potential for attacks like this, and this is a near perfect example of what we have been warning about,” she says.  Although this attack was not successful, there is little doubt a skilled attacker could execute a similar infrastructure attack with more destructive results, says Nayyar. Organizations tasked with operating and protecting critical public infrastructure must assume the worst and take more serious measures to protect their environments, she advises. Fortunately, there were backup systems in place in Oldsmar. What could have been a tragedy instead became a cautionary tale. Both physical security and cybersecurity professionals should pay attention.

What Are The Positive And Negative Effects Of COVID-19 To Security?
What Are The Positive And Negative Effects Of COVID-19 To Security?

The COVID-19 global pandemic had a life-changing impact on all of us in 2020, including a multi-faceted jolt on the physical security industry. With the benefit of hindsight, we can now see more clearly the exact nature and extent of that impact. And it’s not over yet: The pandemic will continue to be top-of-mind in 2021. We asked this week’s Expert Panel Roundtable: What have been the positive and negative effects of Covid-19 on the physical security industry in 2020? What impact will it have on 2021?

Expert Roundup: Healthy Buildings, Blockchain, AI, Skilled Workers, And More
Expert Roundup: Healthy Buildings, Blockchain, AI, Skilled Workers, And More

Our Expert Panel Roundtable is an opinionated group. However, for a variety of reasons, we are sometimes guilty of not publishing their musings in a timely manner. At the end of 2020, we came across several interesting comments among those that were previously unpublished. Following is a catch-all collection of those responses, addressing some of the most current and important issues in the security marketplace in 2021.