the Seoul National University Hospital
 The SNUH Clinical Research Institute
SNUH Clinical Research Institute

Since its establishment in 1885, Seoul National University Hospital has been one of the nation's finest medical facilities.  One of the many excellent medical research departments in SNUH, the Clinical Research Institute is the first specialized organization for clinical research in Korea.  The operation units in CRI include 3 research wards, 6 outpatient clinics, pharmacy department, clinical laboratory/core lab & serum bank, analytical/pharmacology lab, Pharmacoepidemiology Division, and Pharmacodynamic Laboratories.

Challenges

CRI faced a problem.  They didn't have an adequate human resources management system for their building filled with doctors, researchers, and administrative/security staff coming in and out.  They had had an RFID access control system in place to limit access to certain areas of the building, but this just happened to make the human resources management more difficult.

There were many cases where some employees who have terminated their employment did not properly return the RFID cards to the HR management office, and those unreturned cards were often misused by others.  As a result, out of about 2,000 people working in the CRI building, the management office wasn't able to track almost 5-600 people.  To protect their intellectual properties, people and expensive medical equipment, they decided they were in critical need for a security upgrade to a biometrics system, which effectively eliminates the possibility of fraudulent access using others' credentials as it requires biometric features of the entrant only specific to that individual.

"For a place like CRI, where every bit of information needs protection and a variety of extremely high-priced medical equipment is kept, security means more than just a necessity." said project manager Do-Hyeong Kim, of the Domestic Sales Department of IDTECK.

Choosing IDTECK

"We contacted several local solutions providers to deliver the solution we needed, and after doing some research, we decided IDTECK would provide the best solution for us," said Hyeong-seop Kim, senior manager of CRI's Administrative Department. "Our key considerations in selecting IDTECK were hardware stability and experience in projects of similar scale. Our research revealed that compared to its competitors, IDTECK's products possess strength in ability of configuring and implementing large-scale systems," he added.

Since IDTECK's readers and controllers offer strong communication via TCP/IP network and have stability built up over a number of years, they display a strong performance when applied to a large-scale access control system comprising of control panels and readers.  These strengths, coupled with the competitive pricing, were recognized by CRI staff as compelling and served as the main reason for choosing IDTECK's solution.

 
 iTDC is IDTECK's multi-door access control panel with the capacity to control up to 4 readers

Project requirements

The building of the SNUH Clinical Research Institute has a total of 11 floors plus a basement.  Access to certain floors or labs had to be restricted exclusively to authorized staff.  About 2,000 users including researchers and administrative staff needed to be accommodated.  Users on certain floor groups had to be managed in decentralized ways due to the large number of users on each floor and the high turnover rate, which is common to the medical research industry.  Security for the basement had to be much tighter than other areas as it is where the power generation room, electric control room, and other such dangerous facilities are located.

Solution: FINGER006 - fingerprint-recognition proximity card

The FINGER006 is IDTECK's fingerprint-recognition proximity card reader with a keypad.  The reason behind choosing the FINGER006 was mainly because the reader provides various authentication modes including RF card + fingerprint and RF card + password so that some researchers whose fingerprints are injured or damaged from using medical equipment can gain access using card + password verification in lieu of fingerprint verification.  In some areas like radiation rooms where researchers need to enter with sterile gloves on, the card-only authentication mode was applied, and in the basement where several potentially dangerous facilities are located, the RF card + fingerprint + password authentication mode was applied for the highest security level.

Meanwhile, the iTDC is IDTECK's multi-door access control panel with the capacity to control up to 4 readers.  onfiguration using control panels like the iTDC is desirable where multiple reader units must work together as it offers both strong stability and a high level of security

The FINGER006 readers were installed at 43 entry points including those for high security areas such as research labs, operating rooms, radiation rooms and administrative offices.  For controlling these readers, 11 iTDC control panels were placed in secure control rooms across the building and then connected to host computers.

The main server computer, which is responsible for across-the-board access control, was located in the Physical Control room while 4 client computers, responsible for security monitoring and user registration, were located in 4 different administrative offices on the 2nd, 3rd, 7th and 9th floors, respectively.  The STARWATCH iTDC PRO II software was installed on those host computers, and a Hamster (Fingerprint Enrollment Device) and the FINGERPRINT ENROLLMENT PRO 2006 software was installed on each computer, allowing the administrators of each floor group to add users to the system individually.

Convenience for the busy staff was also another consideration.  While ensuring tight security on entry, exit was made quick and hands-free by installing PIR sensors at exits, in order to provide hands-free access for the researchers who often have to carry heavy loads outside.  The STARWATCH iTDC PRO management software was configured to automatically delete those who had no entry events for 2 months, eliminating the problem in which those who have already left the institute still remained in the database. 

 Fingerprint recognition device
  FINGER006, IDTECK's fingerprint recognition device
Benefits realized

"The administrative managers were very happy that they would no longer have to worry too much about security of the institute as they now have complete control over the entrants and an added layer of security with biometric verification," remarked Do-hyeong Kim, a domestic sales representative of IDTECK, adding, "One of the HR managers raved about the convenience and versatility offered by our management software. After all, they no longer worry about the unidentifiable entrants because fingerprint verification provides a virtually foolproof method of ensuring that the person who enters is the same authorized person."

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

Disruptive Innovation Providing New Opportunities In Smart Cities
Disruptive Innovation Providing New Opportunities In Smart Cities

Growth is accelerating in the smart cities market, which will quadruple in the next four years based on 2020 numbers. Top priorities are resilient energy and infrastructure projects, followed by data-driven public safety and intelligent transportation. Innovation in smart cities will come from the continual maturation of relevant technologies such as artificial intelligence (AI), the Internet of Things (IoT), fifth-generation telecommunications (5G) and edge-to-cloud networking. AI and computer vision (video analytics) are driving challenges in security and safety, in particular, with video management systems (VMSs) capturing video streams and exposing them to various AI analytics. Adoption of disruptive technologies “Cities are entering the critical part of the adoption curve,” said Kasia Hanson, Global Director, Partner Sales, IOT Video, Safe Cities, Intel Corp. “They are beginning to cross the chasm to realize their smart city vision. Cities are taking notice and have new incentives to push harder than before. They are in a better position to innovate.” “Safety and security were already important market drivers responsible for adoption of AI, computer vision and edge computing scenarios,” commented Hanson, in a presentation at the Milestone Integration Platform Symposium (MIPS) 2021. She added: “2020 was an inflection point when technology and the market were ripe for disruption. COVID has accelerated the adoption of disruptive technologies in ways we could not have predicted last year.” Challenges faced by cities Spending in the European Union on public order and safety alone stood at 1.7% of GDP in 2018 Providing wide-ranging services is an expanding need in cities of all sizes. There are currently 33 megacities globally with populations over 10 million. There are also another 4,000 cities with populations over 100,000 inhabitants. Challenges for all cities include improving public health and safety, addressing environmental pressures, enabling mobility, improving quality of life, promoting economic competitiveness, and reducing costs. Spending in the European Union on public order and safety alone stood at 1.7% of GDP in 2018. Other challenges include air quality – 80% of those living in urban areas are exposed to air quality levels that exceed World Health Organization (WHO) limits. Highlighting mobility concerns is an eye-opening statistic from Los Angeles in 2017: Residents spent an average of 102 hours sitting in traffic. Smart technology “The Smart City of Today can enable rich and diverse use cases,” says Hanson. Examples include AI-enabled traffic signals to help reduce air pollution, and machine learning for public safety such as real-time visualization and emergency response. Public safety use cases include smart and connected outdoor lighting, smart buildings, crime prevention, video wearables for field agents, smart kiosks, and detection of noise level, glass breaks, and gunshots. Smart technology will make indoor spaces safer by controlling access to a building with keyless and touchless entry. In the age of COVID, systems can also detect face mask compliance, screen for fever, and ensure physical distancing. 2020 was an inflection point when technology and the smart cities market were ripe for disruption, Kasia Hanson told the MIPS 2021 audience. Video solutions Video workloads will provide core capabilities as entertainment venues reopen after the pandemic. When audiences attend an event at a city stadium, deep learning and AI capabilities analyze customer behaviors to create new routes, pathways, signage and to optimize cleaning operations. Personalized digital experiences will add to the overall entertainment value. In the public safety arena, video enables core capabilities such as protection of people, assets, and property, emergency response, and real-time visualization, and increased situational awareness. Video also provides intelligent incident management, better operational efficiency, and faster information sharing and collaboration. Smart video strategy Intel and Milestone provide video solutions across many use cases, including safety and security Video at the edge is a key element in end-to-end solutions. Transforming data from various point solutions into insights is complicated, time-consuming, and costly. Cities and public venues are looking for hardware, software, and industry expertise to provide the right mix of performance, capabilities, and cost-effectiveness. Intel’s smart video strategy focuses around its OpenVINO toolkit. OpenVINO, which is short for Open Visual Inference and Neural network Optimization, enables customers to build and deploy high-performing computer vision and deep learning inference applications. Intel and Milestone partnership – Video solutions “Our customers are asking for choice and flexibility at the edge, on-premises and in the cloud,” said Hansen in her presentation at the virtual conference. “They want the choice to integrate with large-scale software packages to speed deployment and ensure consistency over time. They need to be able to scale computer vision. Resolutions are increasing alongside growth in sensor installations themselves. They have to be able to accommodate that volume, no matter what causes it to grow.” As partners, Intel and Milestone provide video solutions across many use cases, including safety and security. In effect, the partnership combines Intel’s portfolio of video, computer vision, inferencing, and AI capabilities with Milestone’s video management software and community of analytics partners. Given its complex needs, the smart cities market is particularly inviting for these technologies.

What Are the Physical Security Challenges of Smart Cities?
What Are the Physical Security Challenges of Smart Cities?

The emergence of smart cities provides real-world evidence of the vast capabilities of the Internet of Things (IoT). Urban areas today can deploy a variety of IoT sensors to collect data that is then analyzed to provide insights to drive better decision-making and ultimately to make modern cities more livable. Safety and security are an important aspect of smart cities, and the capabilities that drive smarter cities also enable technologies that make them safer. We asked this week’s Expert Panel Roundtable: What are the physical security challenges of smart cities?

New Markets For AI-Powered Smart Cameras In 2021
New Markets For AI-Powered Smart Cameras In 2021

Organizations faced a number of unforeseen challenges in nearly every business sector throughout 2020 – and continuing into 2021. Until now, businesses have been on the defensive, reacting to the shifting workforce and economic conditions, however, COVID-19 proved to be a catalyst for some to accelerate their long-term technology and digitalization plans. This is now giving decision-makers the chance to take a proactive approach to mitigate current and post-pandemic risks. These long-term technology solutions can be used for today’s new world of social distancing and face mask policies and flexibly repurposed for tomorrow’s renewed focus on efficiency and business optimization. For many, this emphasis on optimization will likely be precipitated by not only the resulting economic impacts of the pandemic but also the growing sophistication and maturity of technologies such as Artificial Intelligence (AI) and Machine Learning (ML), technologies that are coming of age just when they seem to be needed the most.COVID-19 proved to be a catalyst for some to accelerate their long-term technology and digitalization plans Combined with today’s cutting-edge computer vision capabilities, AI and ML have produced smart cameras that have enabled organizations to more easily implement and comply with new health and safety requirements. Smart cameras equipped with AI-enabled intelligent video analytic applications can also be used in a variety of use cases that take into account traditional security applications, as well as business or operational optimization, uses – all on a single camera. As the applications for video analytics become more and more mainstream - providing valuable insights to a variety of industries - 2021 will be a year to explore new areas of use for AI-powered cameras. Optimizing production workflows and product quality in agriculture Surveillance and monitoring technologies are offering value to industries such as agriculture by providing a cost-effective solution for monitoring of crops, business assets and optimizing production processes. As many in the agriculture sector seek to find new technologies to assist in reducing energy usage, as well as reduce the environmental strain of modern farming, they can find an unusual ally in smart surveillance. Some niche farming organizations are already implementing AI solutions to monitor crops for peak production freshness in order to reduce waste and increase product quality.  For users who face environmental threats, such as mold, parasites, or other insects, smart surveillance monitoring can assist in the early identification of these pests and notify proper personnel before damage has occurred. They can also monitor vast amounts of livestock in fields to ensure safety from predators or to identify if an animal is injured. Using video monitoring in the growing environment as well as along the supply chain can also prove valuable to large-scale agriculture production. Applications can track and manage inventory in real-time, improving knowledge of high-demand items and allowing for better supply chain planning, further reducing potential spoilage. Efficient monitoring in manufacturing and logistics New challenges have arisen in the transportation and logistics sector, with the industry experiencing global growth. While security and operational requirements are changing, smart surveillance offers an entirely new way to monitor and control the physical side of logistics, correcting problems that often go undetected by the human eye, but have a significant impact on the overall customer experience. Smart surveillance offers an entirely new way to monitor and control the physical side of logistics, correcting problems that often go undetected by the human eye. Video analytics can assist logistic service providers in successfully delivering the correct product to the right location and customer in its original condition, which normally requires the supply chain to be both secure and ultra-efficient. The latest camera technology and intelligent software algorithms can analyze footage directly on the camera – detecting a damaged package at the loading dock before it is loaded onto a truck for delivery. When shipments come in, smart cameras can also alert drivers of empty loading bays available for offloading or alert facility staff of potential blockages or hazards for incoming and outgoing vehicles that could delay delivery schedules planned down to the minute. For monitoring and detecting specific vehicles, computer vision in combination with video analysis enables security cameras to streamline access control measures with license plate recognition. Smart cameras equipped with this technology can identify incoming and outgoing trucks - ensuring that only authorized vehicles gain access to transfer points or warehouses. Enhance regulatory safety measures in industrial settings  Smart surveillance and AI-enabled applications can be used to ensure compliance with organizational or regulatory safety measures in industrial environments. Object detection apps can identify if employees are wearing proper safety gear, such as facial coverings, hard hats, or lifting belts. Similar to the prevention of break-ins and theft, cameras equipped with behavior detection can help to automatically recognize accidents at an early stage. For example, if a worker falls to the ground or is hit by a falling object, the system recognizes this as unusual behavior and reports it immediately. Going beyond employee safety is the ability to use this technology for vital preventative maintenance on machinery and structures. A camera can identify potential safety hazards, such as a loose cable causing sparks, potential wiring hazards, or even detect defects in raw materials. Other more subtle changes, such as gradual structural shifts/crack or increases in vibrations – ones that would take the human eye months or years to discover – are detectable by smart cameras trained to detect the first signs of mechanical deterioration that could potentially pose a physical safety risk to people or assets. Early recognition of fire and smoke is another use case where industrial decision-makers can find value. Conventional fire alarms are often difficult to properly mount in buildings or outdoor spaces and they require a lot of maintenance. Smart security cameras can be deployed in difficult or hard-to-reach areas. When equipped with fire detection applications, they can trigger notification far earlier than a conventional fire alarm – as well as reduce false alarms by distinguishing between smoke, fog, or other objects that trigger false alarms. By digitizing analog environments, whether a smoke detector or an analog pressure gauge, decision-makers will have access to a wealth of data for analysis that will enable them to optimize highly technical processes along different stages of manufacturing - as well as ensure employee safety and security of industrial assets and resources. Looking forward to the future of smart surveillance With the rise of automation in all three of these markets, from intelligent shelving systems in warehouses to autonomous-driving trucks, object detection for security threats, and the use of AI in monitoring agricultural crops and livestock, the overall demand for computer vision and video analytics will continue to grow. That is why now is the best time for decision-makers across a number of industries to examine their current infrastructure and determine if they are ready to make an investment in a sustainable, multi-use, and long-term security and business optimization solution.