Determining the power requirements of every systems product taking into account their integration with one another is critical
 Selecting the optimum power supply for a system is critical to an installation 

When it comes to selecting power supplies, knowledge is power. Determining the power requirements of every systems product, taking into account their integration with one another is critical to ensure that you are selecting and installing the power solutions most appropriate for your installation. Such information will enable you to select the power supplies that will be required to keep your security system running efficiently in the long run. Paul Rizzuto, Technical Sales Manager, Altronix Corp outlines some of the key factors to consider when choosing the right power solution for security installations - including those of video surveillance systems and access control systems - and fire alarm systems.

Questions to consider when selecting the optimum power supply

Before commencing the evaluation and selection process, three fundamental questions/issues need be addressed:

Approvals and conformance to norms:

Are there any specific agency approvals that the installation must conform to?

Each state, county and even municipality has their own requirements regarding agency approvals. There are a variety of compliance issues such as UL listings for video, access control and fire/life safety that need to be adhered to along with specific local codes. It's imperative that you check with the local AHJ (Authority Having Jurisdiction) to find out what agency listings you must conform to during the design process to assure your security system is in compliance before installing any components and power supplies.

Features required:

What are the application specific features required for the installation? 

Selecting power supplies for a security or fire alarm system is a complex process due to a number of variables

Before starting the design process, a comprehensive analysis of the facility's security systems are required to determine feature sets of the power supplies. Up until recently, selecting power supplies often required the need to combine various components to deliver the functionality desired. For example, does the system need battery back-up in case of a power failure?  All that has changed with the introduction of a new breed of integrated power solutions that deliver both cost and installation advantages.

Quantity, location and power requirements of the security system components

What is the number of devices in the system, the power requirements for each, and their physical location?


This information is necessary to determine the size and quantity of the power supplies, how many security devices they will run, and where they will be physically located.  It is always a good rule of thumb to add 20% more power to your calculations as a safety factor.

Power consumption is a primary issue when configuring fire alarm systems 
 Alarm signal generation is a key consideration when dealing with power consumption in fire alarms systems
Dealing with power consumption issues in fire alarm systems

Power consumption is a primary issue when configuring fire alarm systems. One of the most critical considerations revolves around how alarm signals are activated. When an alarm condition exists, Notification Appliance Circuits (NAC) are output from the Fire Alarm Control Panel (FACP) to activate notification appliances such as strobes and horns commonly used to indicate an emergency situation. The number of notification appliances to be activated, along with the current draw for each device and its distance from the FACP, sometimes makes the deployment of NAC Power Extenders a necessary system component.

For example, in large commercial installations or multi-tenant buildings, the total current draw of the notification appliances may well exceed the power output of the FACP. In these instances, one or more NAC Power Extenders need to be installed for those notification appliances where the wire runs are too long for the FACP to deliver sufficient power. 

Features to consider when selecting a NAC Power Extender:

  • Number of Class A or Class B indicating circuits.
  • Total power rating (ex. 6.5 amp, 8 amp or 10 amp).
  • Number of Aux. power outputs with or without battery backup.
  • Programmable outputs:
    • Synchronization
    • Temporal Code 3
    • Input to output follower mode.
  • Enclosure capacity:
    • Room for battery backup
    • Ample knockouts and room for wiring
  • Agency approvals UL, MEA, CSFM and FM.

NAC Power Extenders are available with programmable features that maintain horn/strobe synchronization by either producing internally generated sync protocols utilized by major signal manufacturers, or by electronically repeating these sync protocols from the FACP outputs.

Power supply requirements for access control systems - key standards to follow 

any device or system intended to actuate the locking or unlocking of exits, must be connected to the facility's fire alarm system so that all doors will release when an alarm signal is generated 
 To ensure safety any device designated to lock or unlock an exit must be connected to the fire alarm system
Access control systems manage entry and exit points at a facility by means of controlled locking devices. NFPA (National Fire Protection Association) requires that any device or system intended to actuate the locking or unlocking of exits, must be connected to the facility's fire alarm system so that all doors will release when an alarm signal is generated.

To comply with NFPA requirements, there are two classifications of locking devices that need to be addressed: Fail-Safe and Fail-Secure. Fail-Safe locking devices such as magnetic locks release when they lose power. Fail-Secure locking devices such as electric strikes unlock when power is applied and may be manually released from inside a secured area. This determines the manner in which your power solution removes or provides power and the sequence and timing of each action.

Access control power supplies come in both AC and DC versions and some provide multiple voltages simultaneously. Features include independently trigger controlled Fail-Safe/Fail-Secure outputs, power supervision, battery charging and fire alarm interface. Wall and rack mount models are also available.

To comply with NFPA requirements, there are two classifications of locking devices that need to be addressed: Fail-Safe and Fail-Secure

Some systems may also require the installation of panic hardware devices. Upon activation, the devices' high current power demand can reach up to 16amps, but not all power supplies can handle these high inrush currents.  As a result, you need to specify a power supply designed for this type of application.  Some operate a single panic hardware device and require optional modules to add features like timing functions, output relays, fire alarm disconnect, or power for additional panic hardware devices.  Therefore, these "base" models almost always require additional modules to deliver the functionality you need and may not be cost effective. More advanced models offer integrated features and supply a comprehensive solution. In addition to the convenience of these integrated devices, they are highly cost efficient with respect to total cost of ownership and installation.

Video surveillance systems - typical power consumption guidelines

Video surveillance systems typically run 24/7/365 placing high demands on power supplies. These video power supplies need to deliver a clean and consistent source of 24VAC or 12VDC power to assure uninterrupted operation. Depending on the video component's specific power requirements and its location, there is a wide selection of power supplies to select from. They can be wall or rack mounted, designed for use indoors or outdoors, and feature AC or DC outputs. Configurations typically range from 1 to 32 outputs and some models offer additional features like 115 or 230VAC input with current ratings as high as 25 amps, power LED indicators, and PTC or fused protected outputs. Certain models provide both 24VAC and 12VDC to power both types of surveillance cameras simultaneously.

 Temperature differences due to change of seasons, day or  night, can often be extreme and can have a direct affect on the performance of both the video components and the power supp
Environmental conditions can affect the performance of video components and the power supply when situated outdoors 
A few additional variables to consider when selecting video surveillance power supplies include:

Environmental conditions: Temperature differences due to change of seasons, day or  night, can often be extreme and can have a direct affect on the performance of both the video components and the power supply when located outdoors. Enclosures for outdoor power supplies should be rated to withstand the elements.

Ground Isolation: In some cases, the surveillance cameras are not equipped with internal electrical isolation. Should this be the case, it's important to specify a power supply with this feature.

Video Transmission Systems: For years, the use of structured cable has been an inexpensive method for transmitting video and data between head end equipment and camera systems. The introduction of UTP transceiver hubs with integral camera power make it possible to transmit both video and data via structured cable along with the power needed for the cameras. This is accomplished via video balun/combiners which pass the power and data to the camera and send the video back to the head end equipment.

New highly versatile devices with integral power provide system designers with a highly integrated solution. This new breed of integrated device greatly reduces the time and expense of configuring and installing separate components while helping to minimize bandwidth requirements for large security systems.

Paul Rizzuto, Technical Sales Manager, Altronix Corp
Paul Rizzuto
Technical Sales Manage
r
Altronix Corp 

 

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

Disruptive Innovation Providing New Opportunities In Smart Cities
Disruptive Innovation Providing New Opportunities In Smart Cities

Growth is accelerating in the smart cities market, which will quadruple in the next four years based on 2020 numbers. Top priorities are resilient energy and infrastructure projects, followed by data-driven public safety and intelligent transportation. Innovation in smart cities will come from the continual maturation of relevant technologies such as artificial intelligence (AI), the Internet of Things (IoT), fifth-generation telecommunications (5G) and edge-to-cloud networking. AI and computer vision (video analytics) are driving challenges in security and safety, in particular, with video management systems (VMSs) capturing video streams and exposing them to various AI analytics. Adoption of disruptive technologies “Cities are entering the critical part of the adoption curve,” said Kasia Hanson, Global Director, Partner Sales, IOT Video, Safe Cities, Intel Corp. “They are beginning to cross the chasm to realize their smart city vision. Cities are taking notice and have new incentives to push harder than before. They are in a better position to innovate.” “Safety and security were already important market drivers responsible for adoption of AI, computer vision and edge computing scenarios,” commented Hanson, in a presentation at the Milestone Integration Platform Symposium (MIPS) 2021. She added: “2020 was an inflection point when technology and the market were ripe for disruption. COVID has accelerated the adoption of disruptive technologies in ways we could not have predicted last year.” Challenges faced by cities Spending in the European Union on public order and safety alone stood at 1.7% of GDP in 2018 Providing wide-ranging services is an expanding need in cities of all sizes. There are currently 33 megacities globally with populations over 10 million. There are also another 4,000 cities with populations over 100,000 inhabitants. Challenges for all cities include improving public health and safety, addressing environmental pressures, enabling mobility, improving quality of life, promoting economic competitiveness, and reducing costs. Spending in the European Union on public order and safety alone stood at 1.7% of GDP in 2018. Other challenges include air quality – 80% of those living in urban areas are exposed to air quality levels that exceed World Health Organization (WHO) limits. Highlighting mobility concerns is an eye-opening statistic from Los Angeles in 2017: Residents spent an average of 102 hours sitting in traffic. Smart technology “The Smart City of Today can enable rich and diverse use cases,” says Hanson. Examples include AI-enabled traffic signals to help reduce air pollution, and machine learning for public safety such as real-time visualization and emergency response. Public safety use cases include smart and connected outdoor lighting, smart buildings, crime prevention, video wearables for field agents, smart kiosks, and detection of noise level, glass breaks, and gunshots. Smart technology will make indoor spaces safer by controlling access to a building with keyless and touchless entry. In the age of COVID, systems can also detect face mask compliance, screen for fever, and ensure physical distancing. 2020 was an inflection point when technology and the smart cities market were ripe for disruption, Kasia Hanson told the MIPS 2021 audience. Video solutions Video workloads will provide core capabilities as entertainment venues reopen after the pandemic. When audiences attend an event at a city stadium, deep learning and AI capabilities analyze customer behaviors to create new routes, pathways, signage and to optimize cleaning operations. Personalized digital experiences will add to the overall entertainment value. In the public safety arena, video enables core capabilities such as protection of people, assets, and property, emergency response, and real-time visualization, and increased situational awareness. Video also provides intelligent incident management, better operational efficiency, and faster information sharing and collaboration. Smart video strategy Intel and Milestone provide video solutions across many use cases, including safety and security Video at the edge is a key element in end-to-end solutions. Transforming data from various point solutions into insights is complicated, time-consuming, and costly. Cities and public venues are looking for hardware, software, and industry expertise to provide the right mix of performance, capabilities, and cost-effectiveness. Intel’s smart video strategy focuses around its OpenVINO toolkit. OpenVINO, which is short for Open Visual Inference and Neural network Optimization, enables customers to build and deploy high-performing computer vision and deep learning inference applications. Intel and Milestone partnership – Video solutions “Our customers are asking for choice and flexibility at the edge, on-premises and in the cloud,” said Hansen in her presentation at the virtual conference. “They want the choice to integrate with large-scale software packages to speed deployment and ensure consistency over time. They need to be able to scale computer vision. Resolutions are increasing alongside growth in sensor installations themselves. They have to be able to accommodate that volume, no matter what causes it to grow.” As partners, Intel and Milestone provide video solutions across many use cases, including safety and security. In effect, the partnership combines Intel’s portfolio of video, computer vision, inferencing, and AI capabilities with Milestone’s video management software and community of analytics partners. Given its complex needs, the smart cities market is particularly inviting for these technologies.

What Are the Physical Security Challenges of Smart Cities?
What Are the Physical Security Challenges of Smart Cities?

The emergence of smart cities provides real-world evidence of the vast capabilities of the Internet of Things (IoT). Urban areas today can deploy a variety of IoT sensors to collect data that is then analyzed to provide insights to drive better decision-making and ultimately to make modern cities more livable. Safety and security are an important aspect of smart cities, and the capabilities that drive smarter cities also enable technologies that make them safer. We asked this week’s Expert Panel Roundtable: What are the physical security challenges of smart cities?

New Markets For AI-Powered Smart Cameras In 2021
New Markets For AI-Powered Smart Cameras In 2021

Organizations faced a number of unforeseen challenges in nearly every business sector throughout 2020 – and continuing into 2021. Until now, businesses have been on the defensive, reacting to the shifting workforce and economic conditions, however, COVID-19 proved to be a catalyst for some to accelerate their long-term technology and digitalization plans. This is now giving decision-makers the chance to take a proactive approach to mitigate current and post-pandemic risks. These long-term technology solutions can be used for today’s new world of social distancing and face mask policies and flexibly repurposed for tomorrow’s renewed focus on efficiency and business optimization. For many, this emphasis on optimization will likely be precipitated by not only the resulting economic impacts of the pandemic but also the growing sophistication and maturity of technologies such as Artificial Intelligence (AI) and Machine Learning (ML), technologies that are coming of age just when they seem to be needed the most.COVID-19 proved to be a catalyst for some to accelerate their long-term technology and digitalization plans Combined with today’s cutting-edge computer vision capabilities, AI and ML have produced smart cameras that have enabled organizations to more easily implement and comply with new health and safety requirements. Smart cameras equipped with AI-enabled intelligent video analytic applications can also be used in a variety of use cases that take into account traditional security applications, as well as business or operational optimization, uses – all on a single camera. As the applications for video analytics become more and more mainstream - providing valuable insights to a variety of industries - 2021 will be a year to explore new areas of use for AI-powered cameras. Optimizing production workflows and product quality in agriculture Surveillance and monitoring technologies are offering value to industries such as agriculture by providing a cost-effective solution for monitoring of crops, business assets and optimizing production processes. As many in the agriculture sector seek to find new technologies to assist in reducing energy usage, as well as reduce the environmental strain of modern farming, they can find an unusual ally in smart surveillance. Some niche farming organizations are already implementing AI solutions to monitor crops for peak production freshness in order to reduce waste and increase product quality.  For users who face environmental threats, such as mold, parasites, or other insects, smart surveillance monitoring can assist in the early identification of these pests and notify proper personnel before damage has occurred. They can also monitor vast amounts of livestock in fields to ensure safety from predators or to identify if an animal is injured. Using video monitoring in the growing environment as well as along the supply chain can also prove valuable to large-scale agriculture production. Applications can track and manage inventory in real-time, improving knowledge of high-demand items and allowing for better supply chain planning, further reducing potential spoilage. Efficient monitoring in manufacturing and logistics New challenges have arisen in the transportation and logistics sector, with the industry experiencing global growth. While security and operational requirements are changing, smart surveillance offers an entirely new way to monitor and control the physical side of logistics, correcting problems that often go undetected by the human eye, but have a significant impact on the overall customer experience. Smart surveillance offers an entirely new way to monitor and control the physical side of logistics, correcting problems that often go undetected by the human eye. Video analytics can assist logistic service providers in successfully delivering the correct product to the right location and customer in its original condition, which normally requires the supply chain to be both secure and ultra-efficient. The latest camera technology and intelligent software algorithms can analyze footage directly on the camera – detecting a damaged package at the loading dock before it is loaded onto a truck for delivery. When shipments come in, smart cameras can also alert drivers of empty loading bays available for offloading or alert facility staff of potential blockages or hazards for incoming and outgoing vehicles that could delay delivery schedules planned down to the minute. For monitoring and detecting specific vehicles, computer vision in combination with video analysis enables security cameras to streamline access control measures with license plate recognition. Smart cameras equipped with this technology can identify incoming and outgoing trucks - ensuring that only authorized vehicles gain access to transfer points or warehouses. Enhance regulatory safety measures in industrial settings  Smart surveillance and AI-enabled applications can be used to ensure compliance with organizational or regulatory safety measures in industrial environments. Object detection apps can identify if employees are wearing proper safety gear, such as facial coverings, hard hats, or lifting belts. Similar to the prevention of break-ins and theft, cameras equipped with behavior detection can help to automatically recognize accidents at an early stage. For example, if a worker falls to the ground or is hit by a falling object, the system recognizes this as unusual behavior and reports it immediately. Going beyond employee safety is the ability to use this technology for vital preventative maintenance on machinery and structures. A camera can identify potential safety hazards, such as a loose cable causing sparks, potential wiring hazards, or even detect defects in raw materials. Other more subtle changes, such as gradual structural shifts/crack or increases in vibrations – ones that would take the human eye months or years to discover – are detectable by smart cameras trained to detect the first signs of mechanical deterioration that could potentially pose a physical safety risk to people or assets. Early recognition of fire and smoke is another use case where industrial decision-makers can find value. Conventional fire alarms are often difficult to properly mount in buildings or outdoor spaces and they require a lot of maintenance. Smart security cameras can be deployed in difficult or hard-to-reach areas. When equipped with fire detection applications, they can trigger notification far earlier than a conventional fire alarm – as well as reduce false alarms by distinguishing between smoke, fog, or other objects that trigger false alarms. By digitizing analog environments, whether a smoke detector or an analog pressure gauge, decision-makers will have access to a wealth of data for analysis that will enable them to optimize highly technical processes along different stages of manufacturing - as well as ensure employee safety and security of industrial assets and resources. Looking forward to the future of smart surveillance With the rise of automation in all three of these markets, from intelligent shelving systems in warehouses to autonomous-driving trucks, object detection for security threats, and the use of AI in monitoring agricultural crops and livestock, the overall demand for computer vision and video analytics will continue to grow. That is why now is the best time for decision-makers across a number of industries to examine their current infrastructure and determine if they are ready to make an investment in a sustainable, multi-use, and long-term security and business optimization solution.