Download PDF version Contact company
 Standard video resolutions uncovered: part 2
 Megapixel and HDTV resolutions produce higher quality images

What are the benefits of Megapixel and HDTV resolutions? In part 2 of this article, Phil Doyle, Managing Director (UK & Ireland) of Axis Communications continues with an in depth explanation of their key advantages. (Read part 1 of this article on standard video resolutions)

Megapixel resolutions

A network camera that offers megapixel resolution uses a megapixel sensor to deliver an image that contains one million or more pixels. The more pixels a sensor has, the greater the potential it has for capturing finer details and for producing a higher quality image. Megapixel network cameras can be used to allow users to see more details (ideal for identification of people and objects) or to view a larger area of a scene. This benefit is an important consideration in video surveillance applications.

Here are some megapixel formats:

Display format

No. of pixels

Pixels

SXGA

1.3 megapixels

1280x1024

SXGA+(EXGA)

1.4 megapixels

1400x1050

UXGA

1.9 megapixels

1600x1200

WUXGA

2.3 megapixels

1920x1200

QXGA

3.1 megapixels

2048x1536

WQXGA

4.1 megapixels

2560x1600

QSXGA

5.2 megapixels

2560x2048


Megapixel resolution is one area in which network cameras excel over analog cameras. The maximum resolution a conventional analog camera can provide after the video signal has been digitized in a digital video recorder or a video encoder is D1, which is 720x480 pixels (NTSC) or 720x576 pixels (PAL). The D1 resolution corresponds to a maximum of

Megapixel resolution also provides a greater degree of flexibility in terms of being able to provide images with different aspect ratios

View larger image

Illustration of 4:3 and 16:9 aspect ratios

414,720 pixels or 0.4 megapixel. By comparison, a common megapixel format of 1280x1024 pixels gives a 1.3-megapixel resolution. This is more than 3 times the resolution that can be provided by analog CCTV cameras. Network cameras with 2-megapixel and 3-megapixel resolutions are also available, and even higher resolutions are expected in the future.

Megapixel resolution also provides a greater degree of flexibility in terms of being able to provide images with different aspect ratios. (Aspect ratio is the ratio of the width of an image to its height.) A conventional TV monitor displays an image with an aspect ratio of 4:3. The advantage of a 16:9 aspect ratio is that unimportant details, usually located in the upper and lower part of a conventional-sized image, are not present and therefore, bandwidth and storage requirements can be reduced.

High-definition television (HDTV) resolutions

HDTV provides up to five times higher resolution than standard analog TV. HDTV also has better color fidelity and a 16:9 format. Defined by SMPTE (Society of Motion Picture and Television Engineers), the two most important HDTV standards are SMPTE 296M and SMPTE 274M.

  •  Megapixel and HDTV resolutions are ideal for identification of people and objects

    SMPTE 296M (HDTV 720P) defines a resolution of 1280x720 pixels with high color fidelity in a 16:9 format using progressive scanning at 25/30 Hertz (Hz), which corresponds to 25 or 30 frames per second depending on the country, and at 50/60 Hz (50/60 frames per second).

  • SMPTE 274M (HDTV 1080) defines a resolution of 1920x1080 pixels with high color fidelity in a 16:9 format using either interlaced or progressive scanning at 25/30 Hz and 50/60Hz.

A camera that complies with the SMPTE standards indicates adherence to HDTV quality and should provide all the benefits of HDTV in resolution, color fidelity and frame rate.

The HDTV standard is based on square pixels-similar to computer screens, so HDTV video from network video products can be shown on either HDTV screens or standard computer monitors. With progressive scan HDTV video, no conversion or deinterlacing technique needs to be applied when the video is to be processed by a computer or displayed on a computer screen.

Axis Communication logo 

    

 

  Phil Doyle
  Managing Director (UK & Ireland) 
  Axis Communications 
    

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

Why Visualization Platforms Are Vital For An Effective Security Operation Center (SOC)
Why Visualization Platforms Are Vital For An Effective Security Operation Center (SOC)

Display solutions play a key role in SOCs in providing the screens needed for individuals and teams to visualize and share the multiple data sources needed in an SOC today. Security Operation Center (SOC) Every SOC has multiple sources and inputs, both physical and virtual, all of which provide numerous data points to operators, in order to provide the highest levels of physical and cyber security, including surveillance camera feeds, access control and alarm systems for physical security, as well as dashboards and web apps for cyber security applications. Today’s advancements in technology and computing power not only have increasingly made security systems much more scalable, by adding hundreds, if not thousands, of more data points to an SOC, but the rate at which the data comes in has significantly increased as well. Accurate monitoring and surveillance This has made monitoring and surveillance much more accurate and effective, but also more challenging for operators, as they can’t realistically monitor the hundreds, even thousands of cameras, dashboards, calls, etc. in a reactive manner. Lacking situational awareness is often one of the primary factors in poor decision making In order for operators in SOC’s to be able to mitigate incidents in a less reactive way and take meaningful action, streamlined actionable data is needed. This is what will ensure operators in SOC truly have situational awareness. Situational awareness is a key foundation of effective decision making. In its simplest form, ‘It is knowing what is going on’. Lacking situational awareness is often one of the primary factors in poor decision making and in accidents attributed to human error. Achieving ‘true’ situational awareness Situational awareness isn’t just what has already happened, but what is likely to happen next and to achieve ‘true’ situational awareness, a combination of actionable data and the ability to deliver that information or data to the right people, at the right time. This is where visualization platforms (known as visual networking platforms) that provide both the situational real estate, as well as support for computer vision and AI, can help SOCs achieve true situational awareness Role of computer vision and AI technologies Proactive situational awareness is when the data coming into the SOC is analyzed in real time and then, brought forward to operators who are decision makers and key stakeholders in near real time for actionable visualization. Computer vision is a field of Artificial Intelligence that trains computers to interpret and understand digital images and videos. It is a way to automate tasks that the human visual system can also carry out, the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images. There are numerous potential value adds that computer vision can provide to operation centers of different kinds. Here are some examples: Face Recognition: Face detection algorithms can be applied to filter and identify an individual. Biometric Systems: AI can be applied to biometric descriptions such as fingerprint, iris, and face matching. Surveillance: Computer vision supports IoT cameras used to monitor activities and movements of just about any kind that might be related to security and safety, whether that's on the job safety or physical security. Smart Cities: AI and computer vision can be used to improve mobility through quantitative, objective and automated management of resource use (car parks, roads, public squares, etc.) based on the analysis of CCTV data. Event Recognition: Improve the visualization and the decision-making process of human operators or existing video surveillance solutions, by integrating real-time video data analysis algorithms to understand the content of the filmed scene and to extract the relevant information from it. Monitoring: Responding to specific tasks in terms of continuous monitoring and surveillance in many different application frameworks: improved management of logistics in storage warehouses, counting of people during event gatherings, monitoring of subway stations, coastal areas, etc. Computer Vision applications When considering a Computer Vision application, it’s important to ensure that the rest of the infrastructure in the Operation Center, for example the solution that drives the displays and video walls, will connect and work well with the computer vision application. The best way to do this of course is to use a software-driven approach to displaying information and data, rather than a traditional AV hardware approach, which may present incompatibilities. Software-defined and open technology solutions Software-defined and open technology solutions provide a wider support for any type of application the SOC may need Software-defined and open technology solutions provide a wider support for any type of application the SOC may need, including computer vision. In the modern world, with everything going digital, all security services and applications have become networked, and as such, they belong to IT. AV applications and services have increasingly become an integral part of an organization’s IT infrastructure. Software-defined approach to AV IT teams responsible for data protection are more in favor of a software-defined approach to AV that allow virtualised, open technologies as opposed to traditional hardware-based solutions. Software’s flexibility allows for more efficient refreshment cycles, expansions and upgrades. The rise of AV-over-IP technologies have enabled IT teams in SOC’s to effectively integrate AV solutions into their existing stack, greatly reducing overhead costs, when it comes to technology investments, staff training, maintenance, and even physical infrastructure. AV-over-IP software platforms Moreover, with AV-over-IP, software-defined AV platforms, IT teams can more easily integrate AI and Computer Vision applications within the SOC, and have better control of the data coming in, while achieving true situational awareness. Situational awareness is all about actionable data delivered to the right people, at the right time, in order to address security incidents and challenges. Situational awareness is all about actionable data delivered to the right people Often, the people who need to know about security risks or breaches are not physically present in the operation centers, so having the data and information locked up within the four walls of the SOC does not provide true situational awareness. hyper-scalable visual platforms Instead there is a need to be able to deliver the video stream, the dashboard of the data and information to any screen anywhere, at any time — including desktops, tablets phones — for the right people to see, whether that is an executive in a different office or working from home, or security guards walking the halls or streets. New technologies are continuing to extend the reach and the benefits of security operation centers. However, interoperability plays a key role in bringing together AI, machine learning and computer vision technologies, in order to ensure data is turned into actionable data, which is delivered to the right people to provide ‘true’ situational awareness. Software-defined, AV-over-IP platforms are the perfect medium to facilitate this for any organizations with physical and cyber security needs.

What New Technologies And Trends Will Shape Video Analytics?
What New Technologies And Trends Will Shape Video Analytics?

The topic of video analytics has been talked and written about for decades, and yet is still one of the cutting-edge themes in the physical security industry. Some say yesterday’s analytics systems tended to overpromise and underdeliver, and there are still some skeptics. However, newer technologies such as artificial intelligence (AI) are reinvigorating the sector and enabling it to finally live up to its promise. We asked this week’s Expert Panel Roundtable: What new technologies and trends will shape video analytics in 2021?

Tackling The Challenge Of The Growing Cybersecurity Gap
Tackling The Challenge Of The Growing Cybersecurity Gap

The SolarWinds cyberattack of 2020 was cited by security experts as “one of the potentially largest penetrations of Western governments” since the Cold War. This attack put cybersecurity front and center on people’s minds again. Hacking communication protocol The attack targeted the US government and reportedly compromised the treasury and commerce departments and Homeland Security. What’s interesting about the SolarWinds attack is that it was caused by the exploitation of a hacker who injected a backdoor communications protocol.  This means that months ahead of the attack, hackers broke into SolarWinds systems and added malicious code into the company’s software development system. Later on, updates being pushed out included the malicious code, creating a backdoor communication for the hackers to use. Once a body is hacked, access can be gained to many. An explosion of network devices What has made the threat of cyberattacks much more prominent these days has been IT's growth in the last 20 years, notably cheaper and cheaper IoT devices. This has led to an explosion of network devices. IT spending has never really matched the pace of hardware and software growth Compounding this issue is that IT spending has never really matched the pace of hardware and software growth. Inevitably, leading to vulnerabilities, limited IT resources, and an increase in IoT devices get more attention from would-be hackers. Bridging the cybersecurity gap In the author’s view, this is the main reason why the cybersecurity gap is growing. This is because it inevitably boils down to counter-strike versus counter-strike. IT teams plug holes, and hackers find new ones, that is never going to stop. The companies must continue fighting cyber threats by developing new ways of protecting through in-house testing, security best practice sources, and both market and customer leads. End-user awareness One of the key battlegrounds here is the education of end-users. This is an area where the battle is being won at present, in the author’s opinion. End-users awareness of cybersecurity is increasing. It is crucial to educate end-users on what IoT devices are available, how they are configured, how to enable it effectively, and critically, how to use it correctly and safely. Physical security network A valuable product that tackles cybersecurity is, of course, Razberi Monitor™, which is new to ComNet’s portfolio. Monitor™ is a software platform that provides a top-down view of the physical security network and ecosystem. Monitor™ is a software platform that provides a top-down view of the physical security network and ecosystem It monitors and manages all the system components for cybersecurity and system health, providing secure visibility into the availability, performance, and cyber posture of servers, storage, cameras, and networked security devices. Proactive maintenance By intelligently utilizing system properties and sensor data, Razberi’s award-winning cybersecurity software prevents problems while providing a centralized location for asset and alert management. Monitor™ enables proactive maintenance by offering problem resolutions before they become more significant problems. Identifying issues before they fail and become an outage is key to system availability and, moreover, is a considerable cost saving.