Download PDF version Contact company

Blind spots in surveillance coverage, incompatible video and access control systems, lack of adequate perimeter measures are some of the common issues that facility directors must address with their security teams. At the end of the day, facility executives need technology that accomplish more with less and that expand situational awareness, overall system functionality, and real-time response capabilities, while generating cost savings. By leveraging technology like thermal imaging, this is possible.

FLIR Systems stresses that security directors who want to improve facility management, specifically 24/7 monitoring for heightened security and elevated skin temperature frontline screening for entry control, should consider incorporating thermal cameras into their next security upgrade or new installation project.

Leveling up security with thermal security cameras

By using thermal security cameras, facility directors can better protect their property

By using thermal security cameras, facility directors can better protect their property and tenants from external threats. Backed by decades of successful deployment in the government and defense sector for reconnaissance, thermal imaging is a trusted technology.

New innovations have expanded the use cases for thermal cameras and made them widely available to commercial and industrial facilities. Corporate offices, manufacturing plants and healthcare campuses all use thermal cameras as a core component of their security strategy.

24/7 surveillance in low light or dark settings

Thermal security cameras perform in adverse conditions where standard surveillance cameras cannot. Visual cameras require a light source, and thus, additional infrastructure, to produce an image. If there’s no light, there’s no video. Because thermal cameras measure infrared radiation, or heat, they do not need illumination to produce imagery. In fact, thermal cameras can see in total darkness as well as in rain, smoke, and light fog. They truly enable 24/7 surveillance.

Furthermore, thermal cameras yield high-contrast imagery, which not only enhances video analytics performance, but also situational awareness. For example, a security operator viewing a thermal camera feed can easily spot a trespasser attempting to camouflage in the foliage at night, by alerting the operator of body heat on premise. Thermal cameras also enable alarm validation.

Equipped with onboard video analytics

While motion sensors, laser detectors and fiber optic cables need another technology to visually verify the alert, thermal cameras already provide this function. With onboard analytics, thermal cameras detect objects, classify whether it’s a human, animal or vehicle, and provide video clips for remote operators to assess the alert. Consequently, thermal cameras minimize unnecessary dispatch of guards or police for false positives, saving valuable time, money and resource for facilities.

In the event of a true alarm, thermal cameras enable superior suspect tracking. Upon receiving an intrusion alert, a long-range pan-tilt thermal camera can widely monitor the area and scan the property. The camera can then follow the movements of an intruder and if equipped with both thermal and optical sensors, provide both thermal and color video of the person. With this data, a security officer can ascertain the threat level and determine whether the person is an employee who forgot their ID or an unauthorized person trespassing on private property.

Maximising intrusion detection capabilities

It is important to note that thermal cameras cannot detect a specific individual or their personal information

It is important to note that thermal cameras cannot detect a specific individual or their personal information, rather they classify whether the object is a human and then, further analysis is required through of the use of visual cameras for identification.

For these reasons, facility directors, especially those managing large campuses or properties, should consider deploying thermal cameras to maximize their intrusion detection capabilities for stronger overall security.

Streamlining entry control with temperature screening

Facility executives can also improve their access and entry control security procedures by using radiometric thermal cameras for temperature screening. COVID-19, classified as a global pandemic in March 2020, has permanently changed how facility directors build security and environmental, health and safety (EHS) plans.

Now, facility directors are prioritizing protocols and technologies that minimize both the risk of exposure, as well as the spread of infectious diseases among employees, visitors and contractors. Temperature checks have become one of the most widely adopted as a key component of frontline screening practices across facilities. In fact, General Motors plants and the Pentagon Visiting Center are notable examples of critical facilities deploying radiometric thermal cameras for skin temperature screening.

Radiometric thermal cameras

Radiometric thermal cameras for skin temperature screenings allow for a non-contact, frontline diagnostics tool that enables high throughput. These thermal cameras specifically measure skin surface temperature at the inner corner of the eye, the region medially adjacent to the inner canthus, which is known to be the best measurement spot.

The most reliable thermal cameras yield accuracies of ±0.3°C (0.5°F) over a temperature measurement range of 15°C to 45°C (59°F to 113°F). Available in a handheld, tripod-mounted or fixed-mount form factor, elevated skin temperature thermal cameras are deployed inside entryways, immediately screening people as they walk into the facility. These cameras scan a person up to one to two meters (or three to six feet) away. Premium thermal cameras can scan individuals in two seconds or less.

Enhanced detection of elevated skin surface temperature

Thermal cameras are used as an adjunct to clinical procedures in the screening of skin surface temperature

Thermal cameras are intended for use as an adjunct to clinical procedures in the screening of skin surface temperature. Upon detection of an elevated skin temperature, a person must then undergo a secondary screening where a medical device can determine whether the person has an actual fever or should partake in virus specific testing.

By implementing these screening procedures, facility directors ensure a faster, non-invasive method to quickly detect possible signs of infection before an individual enters a populous area. This minimizes the risk of communal spread of viruses among employees in the workplace, which ultimately increases workforce health, safety and peace of mind.

Implementing a total security solution

A total security solution designed to detect both physical threats, as well as environmental and health hazards are one that includes thermal cameras for elevated skin temperature screening. Facility managers can strengthen their risk management plans by proactively expanding their security systems to include these solutions.

Many physical security solutions are already in place at key entry points, as well as additional checkpoints, such as indoor surveillance cameras, visitor management and access control. Implementing screening stations with specific radiometric thermal cameras is a logical integration at these locations.

Choosing the right solution for the facility

While thermal cameras for perimeter protection and elevated skin temperature screening are valuable components to the overall security system, facility directors need to know that not all thermal is created equal.

Thermal cameras need to be carefully researched and evaluated before deployment. Here are a few best practices for choosing the right thermal camera for your facility and application.

  • Define Your Application: A thermal camera made for long-range perimeter monitoring functions differently than a thermal camera built for elevated skin temperature screening. Make sure to choose a camera designed for your specific use case.
  • Know the Distinguishing Characteristics: Be aware of which technological features separate high-performing cameras from low-end options. For perimeter thermal cameras, resolution, detection range and integration capabilities matter. For elevated skin temperature screening cameras, resolution, sensitivity, accuracy and stability are critical.
  • Check for Certifications: Select a thermal camera with proven interoperability. Consider one that is ONVIF compliant to ensure integration with the overall security system and chosen video management software. Additionally, for elevated skin temperature cameras, consider one that has a 510(k) filing (K033967) with the S. Federal and Drug Administration as well as one that supports other screening standards such as ISO/TR 13154:2017 and IEC 80601-2-59:2017.
  • Work with Experienced Partners: Work with a system integrator who is knowledgeable in thermal. Choose thermal cameras from manufacturers with a solid track record of success for both security and elevated skin temperature screening deployments. Leverage guidebooks, site planning tools and online trainings that these experienced manufacturers have to offer to maximize performance.
Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

What New Technologies And Trends Will Shape Video Analytics?
What New Technologies And Trends Will Shape Video Analytics?

The topic of video analytics has been talked and written about for decades, and yet is still one of the cutting-edge themes in the physical security industry. Some say yesterday’s analytics systems tended to overpromise and underdeliver, and there are still some skeptics. However, newer technologies such as artificial intelligence (AI) are reinvigorating the sector and enabling it to finally live up to its promise. We asked this week’s Expert Panel Roundtable: What new technologies and trends will shape video analytics in 2021?

Tackling The Challenge Of The Growing Cybersecurity Gap
Tackling The Challenge Of The Growing Cybersecurity Gap

The SolarWinds cyberattack of 2020 was cited by security experts as “one of the potentially largest penetrations of Western governments” since the Cold War. This attack put cybersecurity front and center on people’s minds again. Hacking communication protocol The attack targeted the US government and reportedly compromised the treasury and commerce departments and Homeland Security. What’s interesting about the SolarWinds attack is that it was caused by the exploitation of a hacker who injected a backdoor communications protocol.  This means that months ahead of the attack, hackers broke into SolarWinds systems and added malicious code into the company’s software development system. Later on, updates being pushed out included the malicious code, creating a backdoor communication for the hackers to use. Once a body is hacked, access can be gained to many. An explosion of network devices What has made the threat of cyberattacks much more prominent these days has been IT's growth in the last 20 years, notably cheaper and cheaper IoT devices. This has led to an explosion of network devices. IT spending has never really matched the pace of hardware and software growth Compounding this issue is that IT spending has never really matched the pace of hardware and software growth. Inevitably, leading to vulnerabilities, limited IT resources, and an increase in IoT devices get more attention from would-be hackers. Bridging the cybersecurity gap In the author’s view, this is the main reason why the cybersecurity gap is growing. This is because it inevitably boils down to counter-strike versus counter-strike. IT teams plug holes, and hackers find new ones, that is never going to stop. The companies must continue fighting cyber threats by developing new ways of protecting through in-house testing, security best practice sources, and both market and customer leads. End-user awareness One of the key battlegrounds here is the education of end-users. This is an area where the battle is being won at present, in the author’s opinion. End-users awareness of cybersecurity is increasing. It is crucial to educate end-users on what IoT devices are available, how they are configured, how to enable it effectively, and critically, how to use it correctly and safely. Physical security network A valuable product that tackles cybersecurity is, of course, Razberi Monitor™, which is new to ComNet’s portfolio. Monitor™ is a software platform that provides a top-down view of the physical security network and ecosystem. Monitor™ is a software platform that provides a top-down view of the physical security network and ecosystem It monitors and manages all the system components for cybersecurity and system health, providing secure visibility into the availability, performance, and cyber posture of servers, storage, cameras, and networked security devices. Proactive maintenance By intelligently utilizing system properties and sensor data, Razberi’s award-winning cybersecurity software prevents problems while providing a centralized location for asset and alert management. Monitor™ enables proactive maintenance by offering problem resolutions before they become more significant problems. Identifying issues before they fail and become an outage is key to system availability and, moreover, is a considerable cost saving.

Will Airport Security’s Pandemic Measures Lead To Permanent Changes?
Will Airport Security’s Pandemic Measures Lead To Permanent Changes?

Travel volumes at airports have been increasing of late, although still below the 2.5 million or so passengers the Transportation Security Administration (TSA) screened every day, on average, before the pandemic. As passengers return, they will notice the airport security experience has changed during the pandemic – and many of the changes are likely to continue even longer. Need for touchless technology The lowest U.S. air travel volume in history was recorded last April, with approximately 87,500 passengers. As passenger traffic plummeted, the aviation community sought to explore the potential of new technologies to make security checkpoints more contactless and flexible when the traffic numbers return. The pandemic has seen an increase in touchless technology deployed in the screening area. Used for cabin baggage screening, Computed Tomography (CT) produces high-quality, 3-D images to enable a more thorough analysis of a bag’s contents. Imaging Technology Millimeter-wave body scanners began replacing metal detectors globally as a primary screening method Enhanced Advanced Imaging Technology (eAIT), which uses non-ionizing radio-frequency energy in the millimeter spectrum, safely screens passengers without physical contact for threats such as weapons and explosives, which may be hidden under a passenger’s clothing. Millimeter-wave body scanners began replacing metal detectors globally as a primary screening method.  AI algorithms Other innovations include an automatic screening lane, centralized image processing, and artificial intelligence (AI). Looking ahead, AI algorithms have the ability to clear most passengers and bags automatically, making the process smoother and freeing up staff to focus only on alarms. The pandemic’s need for contactless screening may accelerate the adoption of AI.   CAT machine Credential Authentication Technology (CAT) machines automatically verify identification documents presented by passengers during the screening process. The TSA continues to accept expired Driver’s Licenses and state-issued IDs for up to a year after expiration, based on the premise that license renewals may be delayed and/or more difficult during the pandemic. The REAL ID enforcement deadline was extended to Oct. 1, 2021.  Health precautions Checkpoint health precautions have been a part of the airport screening experience since early in the pandemic. Last summer, the TSA announced the “Stay Healthy. Stay Secure” campaign, which included requirements such as social distancing among travelers, ID verification without physical contact, plastic shielding installed at various locations, and increased cleaning and disinfecting. In January 2021, President Biden signed an Executive Order requiring travelers to wear face masks when in airports and other transportation facilities (to remain in effect until May 11). Checkpoint screening Clear is a privately owned company that provides expedited security that uses biometrics either a person’s eyes or face to speed along the process of getting people through checkpoints. TSA officers wear masks and gloves at checkpoints and may also wear eye protection or clear plastic face shields. The limits on allowable liquids a passenger may take on board were broadened to include a hand sanitizer container of up to 12 ounces, one per passenger in a carry-on bag. a paradigm shift Just as aviation security changed after 9/11, the COVID-19 crisis is expected to lead to a paradigm shift to create a safer and more secure environment. Measures were implemented so that passengers, staff and other stakeholders could have continued assurance and confidence in airports amid and after the pandemic.