The Insights from the Field series features insight from FLIR experts who recommend, deploy, and use thermal imaging technology every day. FLIR discusses the diverse applications of thermal technology in security, safety, and equipment protection for critical infrastructure.

Epidemics and pandemics can leave large enterprises that employ and receive thousands of people vulnerable to widespread infection and business interruptions. Without the right entry protocols in place, an employee who has symptoms of an infectious disease, such as a fever, could enter a facility and put the entire workforce at risk of exposure.

Skin temperature screening

Elevated Skin Temperature Screening Major businesses are ramping up their workforce safety best practices by deploying FLIR thermal cameras for elevated skin temperature measurement. Registered with the U.S. Food and Drug Administration (FDA), these non-contact thermal cameras measure skin surface temperature at the inner canthus (or corner of a person's eye).

FLIR thermal cameras that are engineered for elevated skin temperature screening can achieve accuracies of ±0.3°C

FLIR thermal cameras that are engineered for elevated skin temperature screening can achieve accuracies of ±0.3°C (0.5°F) over a temperature measurement range of 15°C to 45°C (59°F to 113°F). This aligns with the U.S. FDA Guidance for Industry and Food and Drug Administration Staff as well as with ISO/TR 13154 specification. FLIR provides an array of cameras for elevated skin temperature screening in multiple form factors—including handheld, tripod mounted, or fixed-mounted—optimized for a variety of application needs.

Measuring body temperature

Infrared thermography can detect elevated skin temperatures, which may indicate the presence of a fever. When followed by a screening with a medical device designed specifically for measuring body temperature, such as a thermometer, the use of an infrared camera as an adjunctive diagnostic tool may help contain or limit the spread of viral diseases such as bird flu, swine flu, or COVID-19.

In the wake of COVID-19, businesses across the critical infrastructure market rapidly adopted thermal cameras for elevated skin temperature screening. In the utilities sector, the Office of Cybersecurity, Energy Security and Emergency Response notes how energy utilities are updating their entry protocols in response to COVID-19. Practices now include wellness questionnaires to check for symptoms as well as temperature checks conducted through tools such as thermal cameras.

Screening all patients

GM deployed 377 FLIR thermal cameras across 72 sites to help limit the spread of COVID-19

General Motors (GM) is one of the manufacturers of motor vehicles, has over 85,000 employees in the United States, and has some plants that employ 1,000 people in a given shift. In May 2020, GM deployed 377 FLIR thermal cameras across 72 sites to help limit the spread of COVID-19. Healthcare facilities are also installing FLIR solutions; for example, the VA Medical Center in Manchester, New Hampshire deployed FLIR thermal cameras to screen all patients and staff for elevated skin temperature prior to them entering the building.

In the transportation sector, Emirates airlines deployed FLIR thermal cameras at departure gates for all U.S. gateways beginning in March 2020. Guests traveling on U.S. bound flights out of the Dubai International Airport are screened for elevated skin temperature.

Radiometric thermal cameras

As more critical infrastructure organizations deploy thermal cameras for elevated skin temperature screening, they will likely prompt greater long-term adoption and integration of radiometric thermal cameras into the overall security and safety solution. Here’s why. While temperature screening of employees and guests often falls under the purview of Environmental Health and Safety or Occupational Health and Safety teams, not every business has a dedicated EHS or OHS staff.

As a result, many organizations are tasking their security teams to vet and implement screening solutions. Security officers as well as security equipment, such as surveillance cameras and metal detectors, are already in place at key entry points in a facility. As a result, many security officers must play a dual role as the frontline personnel required to use handheld or tripod mounted thermal cameras to conduct elevated skin temperature screening.

Video surveillance solutions

It’s important to use a high-resolution thermal camera for elevated skin temperature screening

Adding a thermal camera for elevated skin temperature screening is a logical addition to existing video surveillance solutions. As critical infrastructure businesses shift their attention toward the long-term implementation of thermal cameras for elevated skin temperature screening, there are multiple deployment practices to consider. Here are the a few recommendations from FLIR’s team of experts.

Choose a Certified Camera – To ensure optimal reliability and deployment success, choose a thermal camera specifically designed for elevated skin temperature screening with a 510(k) filing (K033967) with the U.S. Food and Drug Administration. When looking to integrate this thermal camera into an existing video management system, make sure the camera is ONVIF-compliant. Other screening standards should be considered including ISO/TR 13154:2017 and IEC 80601-2-59:2017.

Select a Camera with High Resolution – It’s important to use a high-resolution thermal camera for elevated skin temperature screening so one can capture the right pixels to yield accurate readings.

Delivering consistent measurements

Ensure Proper Distance for Screening – Distance matters. Make sure the camera is placed at the manufacturer’s recommended distance away from the individual so the camera can focus. Ensure the camera is stabilized so that the camera will deliver consistent measurements. Place a neutral backdrop a few feet behind the location where the person will be screened, and only screen one person at a time to identify temperature anomalies.

It is more susceptible to environmental interferences and more likely to generate measurement errors

Measure the Right Spot – While the forehead is easier to quickly screen, it is more susceptible to environmental interferences and more likely to generate measurement errors. Research has shown that the corner of the eye—the region medially adjacent to the inner canthus—provides a more accurate estimate of core body temperature than other areas of skin.

Specific skin temperature

This is because skin at the canthi is thin (decreasing insulating effects), is less exposed to environmental factors, and is directly over major arteries which increase blood flow and heat transfer.

Set an Alarm Threshold – For FLIR cameras with a Screen-EST™ mode, set an alarm upon detection of a specific skin temperature compared against a sample average of temperature value. Because skin temperature can vary multiple degrees throughout the day based on the environment and other factors, FLIR Screen-EST mode gathers temperatures from several individuals to determine an average that can be updated throughout the screening operation. This is a defining feature and capability for the FLIR cameras for elevated skin temperature screening.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

Water Plant Attack Emphasizes Cyber’s Impact On Physical Security
Water Plant Attack Emphasizes Cyber’s Impact On Physical Security

At an Oldsmar, Fla., water treatment facility on Feb. 5, an operator watched a computer screen as someone remotely accessed the system monitoring the water supply and increased the amount of sodium hydroxide from 100 parts per million to 11,100 parts per million. The chemical, also known as lye, is used in small concentrations to control acidity in the water. In larger concentrations, the compound is poisonous – the same corrosive chemical used to eat away at clogged drains. The impact of cybersecurity attacks The incident is the latest example of how cybersecurity attacks can translate into real-world, physical security consequences – even deadly ones.Cybersecurity attacks on small municipal water systems have been a concern among security professionals for years. The computer system was set up to allow remote access only to authorized users. The source of the unauthorized access is unknown. However, the attacker was only in the system for 3 to 5 minutes, and an operator corrected the concentration back to 100 parts per million soon after. It would have taken a day or more for contaminated water to enter the system. In the end, the city’s water supply was not affected. There were other safeguards in place that would have prevented contaminated water from entering the city’s water supply, which serves around 15,000 residents. The remote access used for the attack was disabled pending an investigation by the FBI, Secret Service and Pinellas County Sheriff’s Office. On Feb. 2, a compilation of breached usernames and passwords, known as COMB for “Compilation of Many Breaches,” was leaked online. COMB contains 3.2 billion unique email/password pairs. It was later discovered that the breach included the credentials for the Oldsmar water plant. Water plant attacks feared for years Cybersecurity attacks on small municipal water systems have been a concern among security professionals for years. Florida’s Sen. Marco Rubio tweeted that the attempt to poison the water supply should be treated as a “matter of national security.” “The incident at the Oldsmar water treatment plant is a reminder that our nation’s critical infrastructure is continually at risk; not only from nation-state attackers, but also from malicious actors with unknown motives and goals,” comments Mieng Lim, VP of Product Management at Digital Defense Inc., a provider of vulnerability management and threat assessment solutions.The attack on Oldsmar’s water treatment system shows how critical national infrastructure is increasingly becoming a target for hackers as organizations bring systems online “Our dependency on critical infrastructure – power grids, utilities, water supplies, communications, financial services, emergency services, etc. – on a daily basis emphasizes the need to ensure the systems are defended against any adversary,” Mieng Lim adds. “Proactive security measures are crucial to safeguard critical infrastructure systems when perimeter defenses have been compromised or circumvented. We have to get back to the basics – re-evaluate and rebuild security protections from the ground up.” "This event reinforces the increasing need to authenticate not only users, but the devices and machine identities that are authorized to connect to an organization's network,” adds Chris Hickman, Chief Security Officer at digital identity security vendor Keyfactor. “If your only line of protection is user authentication, it will be compromised. It's not necessarily about who connects to the system, but what that user can access once they're inside. "If the network could have authenticated the validity of the device connecting to the network, the connection would have failed because hackers rarely have possession of authorized devices. This and other cases of hijacked user credentials can be limited or mitigated if devices are issued strong, crypto-derived, unique credentials like a digital certificate. In this case, it looks like the network had trust in the user credential but not in the validity of the device itself. Unfortunately, this kind of scenario is what can happen when zero trust is your end state, not your beginning point." “The attack on Oldsmar’s water treatment system shows how critical national infrastructure is increasingly becoming a target for hackers as organizations bring systems online for the first time as part of digital transformation projects,” says Gareth Williams, Vice President - Secure Communications & Information Systems, Thales UK. “While the move towards greater automation and connected switches and control systems brings unprecedented opportunities, it is not without risk, as anything that is brought online immediately becomes a target to be hacked.” Operational technology to mitigate attacks Williams advises organizations to approach Operational Technology as its own entity and put in place procedures that mitigate against the impact of an attack that could ultimately cost lives. This means understanding what is connected, who has access to it and what else might be at risk should that system be compromised, he says. “Once that is established, they can secure access through protocols like access management and fail-safe systems.”  “The cyberattack against the water supply in Oldsmar should come as a wakeup call,” says Saryu Nayyar, CEO, Gurucul.  “Cybersecurity professionals have been talking about infrastructure vulnerabilities for years, detailing the potential for attacks like this, and this is a near perfect example of what we have been warning about,” she says.  Although this attack was not successful, there is little doubt a skilled attacker could execute a similar infrastructure attack with more destructive results, says Nayyar. Organizations tasked with operating and protecting critical public infrastructure must assume the worst and take more serious measures to protect their environments, she advises. Fortunately, there were backup systems in place in Oldsmar. What could have been a tragedy instead became a cautionary tale. Both physical security and cybersecurity professionals should pay attention.

Expert Roundup: Healthy Buildings, Blockchain, AI, Skilled Workers, And More
Expert Roundup: Healthy Buildings, Blockchain, AI, Skilled Workers, And More

Our Expert Panel Roundtable is an opinionated group. However, for a variety of reasons, we are sometimes guilty of not publishing their musings in a timely manner. At the end of 2020, we came across several interesting comments among those that were previously unpublished. Following is a catch-all collection of those responses, addressing some of the most current and important issues in the security marketplace in 2021.

Smart Offices: How Is Mobile ID Changing The Way We Access The Office?
Smart Offices: How Is Mobile ID Changing The Way We Access The Office?

If you’re a security or facilities manager, you may already be aware of the quiet revolution that’s taking place across businesses and organizations up and down the country. By the end of 2020, 20% of all ID and access control systems featured mobile capability, and this is set to increase by a further 34% over the next three years. There’s no doubt that using a smartphone or mobile device in place of traditional credential and access control is a growing trend that’s only been sped up by the pandemic. It’s true that many businesses are still very much focused on remote working, although many are now starting to implement new-and-improved strategies that are better suited to protect the workforce moving forward. Mobile ID systems As the next normal becomes clearer, businesses will be reviewing procedures such as access control, occupancy monitoring, reducing touch points, and tracking visitors. Mobile ID systems are ideally suited to this task. But what are the key reasons for considering such a setup in 2021? But why is this new technology so well-suited to future-proof your physical access system, and why is it becoming so popular? Eradicating outdated legacy credentials Have you seen just how vulnerable outdated Proximity card technology can be? Low-frequency 125kHz cards can be cloned in a matter of seconds with the use of cheap, readily available tools. Despite their weaknesses, they are still used by a huge majority of businesses – big and small. All smartphones include two industry-standard features that make them perfect for operating a secure, contactless credential Replacing such a system with a mobile-enabled system is one of the best ways to increase security ten-fold. Thanks to a cloud-based infrastructure, mobile ID offers best-in-class security and cryptography. All smartphones include two industry-standard features that make them perfect for operating a secure, contactless credential. Bluetooth Smart and NFC (Near Field Communication) make them the best product to operate such a credential via a secure app. If you’re looking for best-in-class security in 2021, mobile access is most definitely the way forward. Removing touch points across the business Reducing touch points and the adoption of touchless facilities has become a key priority for businesses in the wake of COVID-19. Even as businesses start to return to the office and operate a home/office split, it will be imperative that unnecessary contact is kept to an absolute minimum between staff. The traditional issuance of identification and access control credentials can pose problems in this regard. Facility and security managers who are responsible for onboarding and processing ID have done the process face to face. Mobile access makes it possible to carry this process out without people coming into direct content. First, the security manager has access to a secure portal, allowing them to create, manage and edit credentials anywhere. They can upload and remotely transfer mobile ID and access control credentials directly to users’ smartphones over the air. Via the secure app, users can view and see their credentials and immediately begin using it for ID and access control by simply placing their smartphone over card readers. Enabling a more flexible way of working The way in which we work has changed for good. Even as people more people return to the office in 2021, a majority of businesses will be operating a home/office split indefinitely. This once again reinforces the need for a smarter, more adaptable onboarding system. Implementing mobile ID is the perfect way of doing this: over-the-air delivery of credentials and security data is now a given, helping businesses create the perfect balance between the home and the office. No longer do people have to come into the office for the onboarding process. Increasing convenience and user experience More often businesses are realising the value mobile ID can have for enhancing the work experience as well as security Ok, so mobile ID is the perfect way of increasing security and adapting workplaces to a post-COVID way of working. And we’ve not even touched on the most obvious advantage yet: Convenience. How many times have you forgotten your ID card? We’re sure it’s more times than you forget your smartphone. These powerful processors have become intertwined with the way we carry out tasks on a daily basis. They’re so vital that people will soon notice if they’ve forgotten it. From an employee’s perspective, mobile ID and access control is simple, convenient, and extremely user-friendly. More and more businesses are realizing the value mobile ID can have for enhancing the work experience as well as security. From the employer’s perspective, mobile ID means it’s easier for administrators to manage access and credentials. Future-proofing access control now will ensure that in the longer term, mobile ID is well worth the investment. The annual expenditure of printing ID cards and purchasing credentials can be vast, while reissuance costs can also quickly add up for larger organizations. These issues are a thing of the past for businesses using mobile ID. Mobile ID perfect tool for 2021 and beyond Until mobile ID, new and improved credentials’ main focus was on increasing security. Mobile ID not only delivers that, but it also provides a more convenient way of accessing the office in a way that’s perfectly suited to returning to the office in 2021. If there was ever a time to upgrade, now is the time. Summing up, mobile access is changing the way we access the office by: Eliminating weak links in security systems such as outdated legacy card technologies Eradicating the need for touch points across multiple areas of the workplace Enabling a smarter, more flexible approach to onboarding Increasing convenience – for both employers and employees.