Despite 88% of cybersecurity professionals believing automation will make their jobs easier, younger staffers are more concerned that the technology will replace their roles than their veteran counterparts, according to new research by Exabeam, the Smarter SIEM company. The finding is part of the 2020 Cybersecurity Professionals Salary, Skills and Stress Survey, an annual survey of security practitioners.

Overall, satisfaction levels continued a 3-year positive trend, with 96% of respondents indicating they are happy with role and responsibilities and 87% reportedly pleased with salary and earnings. Additionally, there was improvement in gender diversity with female respondents increasing from 9% in 2019 to 21% this year.

Artificial intelligence

The concern for automation among younger professionals in cybersecurity was surprising to us"

The purpose of the survey is to gain insights on trends related to salary, education level, job satisfaction, and general attitudes toward innovative and emerging technologies such as artificial intelligence and machine learning (ML), among cybersecurity professionals worldwide. The survey was fielded to more than 350 professionals in the United States (US), Singapore (SG), Germany (DE), Australia (AUS) and the United Kingdom (UK), collated by research company Censuswide.

“The concern for automation among younger professionals in cybersecurity was surprising to us. In trying to understand this sentiment, we could partially attribute it to lack of on-the-job training using automation technology,” said Samantha Humphries, Security Strategist at Exabeam.

Automation software

“As we noted earlier this year in our State of the SOC research, ambiguity around career path or lack of understanding about automation can have an impact on job security. It’s also possible that this is a symptom of the current economic climate or a general lack of experience navigating the workforce during a global recession.”

Of respondents under the age of 45, 53% agreed or strongly agreed that AI and ML are a threat to their job security. This is contrasted with just 25% of respondents 45 and over who feel the same, possibly indicating that subsets of security professionals in particular prefer to write rules and manually investigate. Interestingly, when asked directly about automation software, 89% of respondents under 45 years old believed it would improve their jobs, yet 47% are still threatened by its use.

Job security

This is again in contrast with the 45 and over demographic, where 80% believed automation would simplify their work, and only 22% felt threatened by its use. Examining the sentiments around automation by region, 47% of US respondents were concerned about job security when automation software is in use, as well as SG (54%), DE (42%), AUS (40%) and UK (33%).

In Exabeam’s 2019 survey, which drew insights from professionals throughout the US, the UK, AUS, Canada, India and the Netherlands, only 10% overall believed that AI and automation were a threat to their jobs. On the flip side, there were noticeable increases in job approval across the board, with an upward trend in satisfaction around role and responsibilities (96%), salary (87%) and work/life balance (77%).

Threatened by automation software

Though the number of female respondents increased this year, it remains to be seen whether this will emerge as a trend

When asked what else they enjoyed about their jobs, respondents listed working in an environment with professional growth (15%) as well as opportunities to challenge oneself (21%) as top motivators. Just over half (53%) reported jobs that are either stressful or very stressful, which is down from last year (62%). Interestingly, despite being among those that are generally threatened by automation software, 100% of respondents aged 18-24 reported feeling secure in their roles and were happiest with their salaries (93%).

Though the number of female respondents increased this year, it remains to be seen whether this will emerge as a trend. This year’s male respondents (78%) are down 13% from last year (91%). In 2019, nearly 41% were in the profession for at least 10 years or more.

Security industry

This year, a larger percentage (83%) have 10 years or less, and more than one-third (34%) have been in the cybersecurity industry for five years or less. Additionally, one-third do not have formal cybersecurity degrees.

“There is evidence that automation and AI/ML are being embraced, but this year’s survey exposed fascinating generational differences when it comes to professional openness and using all available tools to do their jobs,” said Phil Routley, Senior Product Marketing Manager, APJ, Exabeam. “And while gender diversity is showing positive signs of improvement, it’s clear we still have a very long way to go in breaking down barriers for female professionals in the security industry.”

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

How Can Remote or Internet-Based Training Benefit Security?
How Can Remote or Internet-Based Training Benefit Security?

Internet-based training has long provided a less-expensive alternative to in-person classroom time. There are even universities that provide most or all of their instruction online. However, the COVID-19 pandemic has expanded acceptance even more and increased usage of internet-based meeting and learning tools. We asked this week’s Expert Panel Roundtable: How can remote or Internet-based training benefit the physical security market?

How is AI Changing the Security Market?
How is AI Changing the Security Market?

Artificial intelligence is more than just the latest buzzword in the security marketplace. In some cases, smarter computer technologies like AI and machine learning (ML) are helping to transform how security operates. AI is also expanding the industry’s use cases, sometimes even beyond the historic province of the security realm. It turns out that AI is also a timely tool in the middle of a global pandemic. We asked this week’s Expert Panel Roundtable: How is artificial intelligence (AI) changing the security market?

Moving to Sophisticated Electric Locking
Moving to Sophisticated Electric Locking

In part one of this feature, we introduced the shotbolt – a solenoid actuator – as the workhorse at the heart of most straightforward electric locking systems. Shotbolts remain at the core of most sophisticated electric locking solutions as well. But they are supplemented by materials and technologies that provide characteristics suited to specialist security applications. Here we look at some more demanding electric locking applications and contemporary solutions. Preventing forced entry Where the end of the shotbolt is accessible, the electric holding force can be overcome by physical force. That’s why anti-jacking technology is now a frequent feature of contemporary electric solenoid lock actuators. Anti-jacking, dead-locking or ‘bloc’ technology (the latter patented by MSL) is inherent to the way the locking assembly is designed to suit the requirements of the end application. The patented bloc anti-jacking system is highly effective and incorporated into many MSL shotbolts deployed in electric locking applications. The bloc technology uses a ring of steel balls in a shaped internal housing to physically jam the actuated bolt in place. A range of marine locks is widely used on Superyachts for rapid lockdown security from the helm Real life applications for MSL anti-jacking and bloc-equipped shotbolts include installation in the back of supermarket trucks to secure the roller shutter. Once locked from the cab, or remotely using radio technology, these shutters cannot be forced open by anyone with ‘undesirable intentions’ armed with a jemmy. A range of marine locks is widely used on Superyachts for rapid lockdown security from the helm. While anti-jacking features are an option on these shotbolts, consideration was given to the construction materials to provide durability in saltwater environments. Marine locks use corrosion-proof stainless steel, which is also highly polished to be aesthetically pleasing to suit the prestigious nature of the vessel while hiding the innovative technology that prevents the lock being forced open by intruders who may board the craft. Rotary and proportional solenoids sound unlikely but are now common A less obvious example of integrated technology to prevent forced override is a floor lock. This lock assembly is mounted beneath the floor with round-top stainless-steel bolts that project upwards when actuated. They are designed to lock all-glass doors and are arguably the only discreet and attractive way to lock glass doors securely. In a prestigious installation at a historic entranceway in Edinburgh University, the floor locks are remotely controlled from an emergency button behind the reception desk. They act on twin sets of glass doors to quickly allow the doors to close and then lock them closed with another set of subfloor locks. No amount of stamping on or hitting the 15mm protruding bolt pin will cause it to yield, thus preventing intruders from entering. Or leaving! Explosion proofing In many environments, electric locking technology must be ATEX certified to mitigate any risk of explosion. For example, remote electric locking is used widely on oil and gas rigs for stringent access control, general security and for emergency shutter release in the event of fire. It’s also used across many industrial sectors where explosion risks exist, including flour milling, In many environments, electric locking technology must be ATEX certified to mitigate any risk of explosionpowder producers, paint manufacture, etc. This adds a new dimension to the actuator design, demanding not only intrinsically safe electrical circuits and solenoid coils, but the careful selection of metals and materials to eliminate the chance of sparks arising from moving parts. Resilience under pressure The technology boundaries of solenoids are always being pushed. Rotary and proportional solenoids sound unlikely but are now common. More recently, while not directly related to security in the traditional sense, proportional solenoid valves for accurately controlling the flow of hydrogen and gases now exist. Magnet Schultz has an extensive and somewhat innovative new range of hydrogen valves proving popular in the energy and automotive sectors (Fig. 2-6). There’s a different kind of security risk at play here when dealing with hydrogen under pressures of up to 1050 bar. Bio security Less an issue for the complexity of locking technology but more an imperative for the effectiveness of an electric lock is the frequent use of shotbolts in the bio research sector. Remote electric locking is commonplace in many bioreactor applications. Cultures being grown inside bioreactors can be undesirable agents, making 100% dependable locking of bioreactor lids essential to prevent untimely access or the unwanted escape of organisms. Again, that has proven to be topical in the current climate of recurring coronavirus outbreaks around the world. More than meets the eye In part one, I started by headlining that there’s more to electric lock actuation in all manner of security applications than meets the eye and pointed out that while electric locking is among the most ubiquitous examples of everyday security, the complexity often involved and the advanced technologies deployed typically go unnoticed.Integrating the simplest linear actuator into a complex system is rarely simple For end users, that’s a very good thing. But for electro-mechanical engineers designing a system, it can present a challenge. Our goal at Magnet Schultz is to provide a clearer insight into today’s electric locking industry sector and the wide range of locking solutions available – from the straightforward to the specialized and sophisticated. Integrating the simplest linear actuator into a complex system is rarely simple. There’s no substitute for expertise and experience, and that’s what MSL offers as an outsource service to designers. One benefit afforded to those of us in the actuator industry with a very narrow but intense focus is not just understanding the advantages and limitations of solenoid technology, but the visibility of, and participation in, emerging developments in the science of electric locking. Knowing what’s achievable is invaluable in every project development phase.