Customer

Located in the Meadowlands and part of the MetLife Sports Complex in East Rutherford, New Jersey, MetLife Stadium is home to the New York Football Giants and the New York Jets. The $1.6 billion stadium was financed and built by a joint venture between the two teams, who operate it through the New Meadowlands Stadium Company. The stadium opened in April 2010 and boasts a seating capacity of 82,500, making it one of the NFL's largest stadiums. On February 2, 2014, MetLife Stadium played host to Super Bowl® XLVIII.

Challenge

MetLife Stadium wanted to replace 26 IP cameras located at the perimeter gates of the stadium and also to deploy 180° panoramic-view cameras in place of the 27 pan-tilt-zoom (PTZ) cameras that covered the exterior perimeter. Given the large crowds they attract, each football game, concert or other event has its share of unique challenges, including monitoring fan conduct, crowd management situations and dealing with medical emergencies. MetLife Stadium's main goal in upgrading its surveillance system was to ensure a safe, secure environment that would contribute to a memorable guest experience. Incident prevention and monitoring were additional key goals of the project. MetLife Stadium staff members are challenged with trying to determine what happened after an incident occurred. There are often various versions and accounts from those involved and from independent witnesses. Clear recorded video is needed to reveal what actually happened.

Prior to the new camera system being installed, MetLife Stadium used four PTZ cameras to monitor the seating bowl area and these cameras were only used reactively when an incident came to the attention of the stadium's Command Center. With the new camera system, every seat in the seating bowl is monitored at all times. Being able to have their Command Center personnel go back in time and review everyone’s actions is an extremely valuable investigative tool for stadium security personnel and for public safety agencies. Among the stadium security management team's other goals are to identify and examine objects left behind, monitor security screening procedures, investigate slip-and-fall incidents, observe staff performance and provide surveillance for counter terrorism efforts.

Solution

Because MetLife Stadium was designed to be a network-controlled building, IP cameras were part of the original design. When it came time to install cameras to cover the seating bowl, IP was the only platform considered, according to Daniel DeLorenzi, Director of Security for MetLife Stadium.

"To run an analog system would have been cost-prohibitive due to cabling, and the cables would be single-purpose. If upgrades were necessary, the project would have to be completed all over again," DeLorenzi said.

The excellent image quality provided by the Arecont Vision megapixel cameras makes it possible for stadium security to identify individuals

DeLorenzi and the rest of MetLife Stadium's security management team turned to Robert McCabe, owner of Corporate Security Services, Inc., located in Edison, N.J., to assist in selecting IP surveillance components and to design and implement the video surveillance solution. After a careful evaluation process, an optimal surveillance solution was built around megapixel imaging technology from Arecont Vision to ensure wide area coverage with extreme detail and to enable forensic zooming on live and recorded video.

Corporate Security Services deployed more than 130 Arecont Vision megapixel cameras throughout MetLife Stadium, including MegaVideo® Compact 10-megapixel (MP) cameras located around the bowl of the stadium to provide a view of every seat in every section; SurroundVideo® panoramic 8MP cameras provide 180° coverage of entrances and common areas; and MegaDome® 2 3MP cameras with remote focus and wide dynamic range (WDR) are located in the stadium’s security entrance areas. Arecont Vision WDR cameras provide detailed video where bright and dark images exist in the same scene. The Arecont Vision megapixel cameras are controlled using Genetec Security Center, a unified video management system (VMS) which is monitored by a centralized security command center within the stadium.

Arecont Vision worked with Corporate Security Services' designers to provide a layout of the camera locations required to cover the area, which McCabe says helped with the installation. In the end, all the cameras were installed in easily accessible and serviceable locations.

Megapixel Benefit

Because of the high level of detail it provides, one Arecont Vision SurroundVideo panoramic camera covers the same area as multiple IP VGA resolution cameras. By using Arecont Vision cameras to reduce overall camera counts, MetLife Stadium’s security team was able to achieve its goal of implementing an unobtrusive high-performance video surveillance system. With a reduction in the total number of cameras implemented, the system can be more efficiently managed.

MetLife Stadium's policy is to initiate real-time recording 24-hours prior to game day, at which time every camera within the stadium is recorded at its full frame rate. Incidents are recorded prior to, during and for several hours after a game or other event. This allows the security staff to easily search and play back detailed video of any reported incidents from any of the cameras to determine what happened.

Because of the high level of detail it provides, one Arecont Vision SurroundVideo panoramic camera covers the same area as multiple IP VGA resolution cameras

The excellent image quality provided by the Arecont Vision megapixel cameras makes it possible for stadium security to identify individuals, and the high frame rates allow them to see actions that occur. Additional benefits of the Arecont Vision cameras include Day/Night video capabilities where mechanical infrared (IR) cut filters are used for clear images in low light, H.264 compression to reduce network and storage costs and Power over Ethernet (PoE) to reduce cabling costs.

Arecont Vision MegaVideo Compact series box cameras are available in 1.3MP to 10MP resolutions with features that include dual H.264/MJPEG encoding, fast frame rates, privacy masking, pixel binning to increase light sensitivity in 3MP, 5MP and 10MP models, extended motion detection grid, flexible cropping and PoE. They are available in color and Day/Night configurations.

SurroundVideo series megapixel cameras from Arecont Vision are all-in-one 180° and 360° panoramic solutions that are available in 8MP, 12MP WDR, 20MP and 40MP resolutions. Housed in environmental rated IP66 domes, the units feature dual H.264/MJPEG encoding, true Day/Night functionality, IR corrected megapixel lenses, privacy masking, extended motion detection, bit rate control, binning mode to increase light sensitivity in 12MP, 20MP and 40MP models, fast image rates and WDR in 12MP models.

Arecont Vision MegaDome 2 all-in-one cameras with remote focus and remote zoom are available in 1080p, 3MP, 5MP and 10MP resolutions. Features include an IP66-rated / IK-10 impact-resistant dome chassis with a 3-axis camera gimbal for easy adjustment, dual H.264/MJPEG encoding, integrated megapixel vari-focal lens, optional WDR in 1080p and 3MP models, pixel binning in 3MP, 5MP and 10MP models, total PoE and optional IR illumination, audio functionality and heater kit.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version

In case you missed it

COVID-19 Worries Boost Prospects Of Touchless Biometric Systems
COVID-19 Worries Boost Prospects Of Touchless Biometric Systems

Spread of the novel coronavirus has jolted awareness of hygiene as it relates to touching surfaces such as keypads. No longer in favor are contact-based modalities including use of personal identification numbers (PINs) and keypads, and the shift has been sudden and long-term. Both customers and manufacturers were taken by surprise by this aspect of the virus’s impact and are therefore scrambling for solutions. Immediate impact of the change includes suspension of time and attendance systems that are touch-based. Some two-factor authentication systems are being downgraded to RFID-only, abandoning the keypad and/or biometric components that contributed to higher security, but are now unacceptable because they involve touching. Touchless biometric systems in demand The trend has translated into a sharp decline in purchase of touch modality and a sharp increase in the demand for touchless systems, says Alex Zarrabi, President of Touchless Biometrics Systems (TBS). Biometrics solutions are being affected unequally, depending on whether they involve touch sensing, he says. Spread of the novel coronavirus has jolted awareness of hygiene as it relates to touching surfaces such as keypads “Users do not want to touch anything anymore,” says Zarrabi. “From our company’s experience, we see it as a huge catalyst for touchless suppliers. We have projects being accelerated for touchless demand and have closed a number of large contracts very fast. I’m sure it’s true for anyone who is supplying touchless solutions.” Biometric systems are also seeing the addition of thermal sensors to measure body temperature in addition to the other sensors driving the system. Fingerscans and hybrid face systems TBS offers 2D and 3D systems, including both fingerscans and hybrid face/iris systems to provide touchless identification at access control points. Contactless and hygienic, the 2D Eye system is a hybrid system that combines the convenience of facial technology with the higher security of iris recognition. The system recognises the face and then detects the iris from the face image and zeros in to scan the iris. The user experiences the system as any other face recognition system. The facial aspect quickens the process, and the iris scan heightens accuracy. TBS also offers the 2D Eye Thermo system that combines face, iris and temperature measurement using a thermal sensor module. TBS's 2D Eye Thermo system combines face, iris and temperature measurement using a thermal sensor module Another TBS system is a 3D Touchless Fingerscan system that provides accuracy and tolerance, anti-spoofing, and is resilient to water, oil, dust and dirt. The 2D+ Multispectral for fingerprints combines 2D sensing with “multispectral” subsurface identification, which is resilient to contaminants and can read fingerprints that are oily, wet, dry or damaged – or even through a latex glove. In addition, the 3D+ system by TBS provides frictionless, no-contact readings even for people going through the system in a queue. The system fills the market gap for consent-based true on-the-fly systems, says Zarrabi. The system captures properties of the hand and has applications in the COVID environment, he says. The higher accuracy and security ratings are suitable for critical infrastructure applications, and there is no contact; the system is fully hygienic. Integration with access control systems Integration of TBS biometrics with a variety of third-party access control systems is easy. A “middleware” subsystem is connected to the network. Readers are connected to the subsystem and also to the corporate access control system. An interface with the TBS subsystem coordinates with the access control system. For example, a thermal camera used as part of the biometric reader can override the green light of the access control system if a high temperature (suggesting COVID-19 infection, for example) is detected. The enrollment process is convenient and flexible and can occur at an enrollment station or at an administration desk. Remote enrollment can also be accomplished using images from a CCTV camera. All templates are encrypted. Remotely enrolled employees can have access to any location they need within minutes. The 3D+ system by TBS provides frictionless, no-contact readings even for people going through the system in a queue Although there are other touchless technologies available, they cannot effectively replace biometrics, says Zarrabi. For example, a centrally managed system that uses a Bluetooth signal from a smart phone could provide convenience, is “touchless,” and could suffice for some sites. However, the system only confirms the presence and “identity” of a smart phone – not the person who should be carrying it. “There has been a lot of curiosity about touchless, but this change is strong, and there is fear of a possible second wave of COVID-19 or a return in two or three years,” says Zarrabi. “We really are seeing customers seriously shifting to touchless.”

How To Use Threat Intelligence Data To Manage Security In The Age Of COVID-19
How To Use Threat Intelligence Data To Manage Security In The Age Of COVID-19

COVID-19 has already had a huge impact on the global economy. According to Statista, GDP growth globally will drop from around 3% to 2.4% - equivalent to a drop of around $35 trillion worldwide. In sectors like oil and gas, the impact is particularly acute: IHS Markit predicted that the reduction in oil consumption due to COVID-19 has led to a first-half surplus of 1.8 billion barrels of crude oil. The macroeconomic trends around these worldwide sectors point to harsher economic conditions and recession. For companies in the oil and gas sector running complex operations around the world, this will lead directly to tougher trading environments and a lot of necessary belt-tightening when it comes to costs around operations. Indirectly, the potential recession could cause more civil unrest and security threats for them as well. To cope with these potential challenges, companies will have to look at how they can maintain security for their operations and prevent risks as much as possible. Taking a contextual approach to physical security With these two goals in mind, looking at threat intelligence data should be considered. Threat intelligence refers to a set of data that can be used to judge current and future trends around risks, from everyday crime or political changes through to larger events like civil unrest, terrorism or the current pandemic. Based on data around these issues, companies can make better decisions on how they invest and manage their security posture in advance. Behind this overall approach, however, there are a significant number of moving parts that have to be considered. This includes where the data comes from, how it is used, and who is using the data. Companies can make better decisions on how they invest and manage their security posture The first consideration for threat intelligence is where data comes from. Typically, companies with large oilfields or refinery operations will have large investments in physical security to protect these environments, and part of this spend will include intelligence on local market, political and security conditions. Using this forecast data, your security leadership team can ensure that they have the right resources available in advance of any particular problem. This data can come from multiple sources, from social media data and crowdsourced information through to government, police and private company feeds. This mass of information can then be used to inform your planning and decision making around security, and how best to respond. However, one issue for oil and gas companies with distributed operations is how much data they have to manage over time. With so many potential sources of information all feeding back in real time, it’s hard to make sense of what comes in. Similarly, companies with international teams may have different sets and sources of data available to different parts of their organizations - while each team has its own view of what is going on, they may be missing out on contextual data from other sources held by neighbouring teams or by the central security department. Without a complete picture, it is easy to miss out on important information. Making threat intelligence smarter To solve this problem - and to reduce the costs around managing threat intelligence data - centralizing your approach can make it easier to provide that context to all your teams and stakeholders. Rather than letting each team set up and run their own threat intelligence approach, centralizing the data and letting each team use this can reduce costs. More importantly, it can improve the quality of your threat intelligence approach overall. By applying a combination of algorithms and security analysts to evaluate threat intelligence centrally, you can improve the quality of the data that you have coming into the organization in the first place. This approach provides higher quality data for decision making. However, a centralized approach is not enough on its own. Local knowledge and analysis is always useful. Consequently, alongside any centralization approach you have to have better filtering and search capabilities, otherwise you risk teams not being able to get the information that is particularly relevant and timely to them. This approach of bringing together centralized management of data feeds with more powerful tools for local teams to find what they want and get that access in real time represents the best of both worlds. Planning ahead Scenarios vary from a best case return to pre-crisis revenues of $50 to $60 per barrel by 2021 or 2022 According to consultancy firm McKinsey, the oil and gas sector faces an enormous challenge over the next few years. Scenarios vary from a best case return to pre-crisis revenues of $50 to $60 per barrel by 2021 or 2022, through to a worst case scenario where demand never returns and the industry has to undertake managed decline around some assets and look for new market opportunities in others. Whatever scenario plays out in the real world, security for existing assets will be a continued requirement. Planning ahead using threat intelligence data will be essential whatever happens. To help reduce costs and improve data quality, centralizing this approach will help. Without this mix of global oversight and local detail, companies will find their operations hampered and wrong decisions are made. It’s only by applying threat intelligence data in the right context that security teams will be able to keep up with the challenges of the future.

What Are the Security Challenges of the Oil and Gas Market?
What Are the Security Challenges of the Oil and Gas Market?

Protecting the oil and gas market is key to a thriving economy. The list of security challenges for oil and gas requires the best technology solutions our industry has to offer, from physical barriers to video systems to cybersecurity. We asked this week’s Expert Panel Roundtable: What are the security challenges of the oil and gas market?