Aruba, a Hewlett Packard Enterprise company, announced an expansive set of cross-portfolio edge-to-cloud security integrations for Aruba ESP (Edge Services Platform).

The new advancements include the integration of the ClearPass Policy Manager secure network access control platform with the Aruba EdgeConnect SD-WAN edge platform, formerly Silver Peak, the integration of Aruba Threat Defense with the EdgeConnect platform, and the expansion of the Aruba ESP multivendor security partner ecosystem, providing enterprise customers with the freedom to deploy best-of-breed, cloud-delivered secure access service edge (SASE) security components of their choice. Today’s Aruba ESP advancements will enable enterprises to fast-track their digital transformation journey from edge-to-cloud.

Adoption of cloud-hosted services

As organizations contend with challenges resulting from the ongoing COVID-19 pandemic and a new “work from anywhere” normal, the adoption of cloud-hosted services will continue to accelerate. This shift is intensifying the urgency to transform conventional data center and MPLS-centric and VPN-based networks to a cloud-native SASE architecture that features more dynamic provisioning of secure network services while protecting data from end-to-end.

In parallel, digital transformation is causing a significant increase of IoT devices connecting to the network, presenting new challenges that are not addressed with cloud-delivered security alone. Since IoT devices are agentless, IT departments cannot install security clients or redirect device traffic to cloud security services; therefore, Zero Trust security must be applied at the WAN edge.

Identity-based security policy

Enterprise customers now have the ability to apply granular-level, identity-based security policy To realize the full potential of the cloud and digital transformation, organizations require a new WAN edge that combines on-premises and cloud-delivered security, delivering on the promise of SASE to protect users connecting to SaaS and public cloud platforms and to safeguard IoT devices that require Zero Trust identity-based security. Through the new Aruba ESP integrations being announced, enterprise customers now have the ability to apply granular-level, identity-based security policy from edge-to-cloud to safely connect and protect both users and devices.

A recent report from communications research firm 650 Group highlights the growing emphasis on SASE while explaining the need for enterprises to re-examine their security approach in light of the current technology evolution.

Customer feedback

Chris DePuy, founding technology analyst at 650 Group states, “As enterprises shift toward Zero Trust and SASE architectures, they are increasingly evaluating and deploying multi-vendor cloud-delivered security services, and it’s not necessary for all the SASE components to come from a single vendor.

Aruba’s approach strikes a balance between delivering on-premises security functionality at the WAN edge and providing customers with the freedom of choice to integrate leading cloud-delivered security services from partners like Zscaler, Netskope, and Check Point. This multi-vendor partnering strategy provides enterprises with the flexibility to continue working with existing vendors or shift toward ‘best-of-breed’ systems.

ClearPass Policy Manager integration

The integration of ClearPass Policy Manager with the Aruba EdgeConnect SD-WAN edge platform augments application intelligence by adding identity knowledge of users, IoT devices, roles, and security posture to form the basis of a SASE WAN edge.

Combining role and security posture intelligence with advanced dynamic segmentation capabilities eliminates the complexity associated with implementing hundreds of VLANs for each class of user and device, dramatically simplifying network administration and management. Integrating ClearPass Policy Manager with EdgeConnect provides a consistent and automated definition of roles that can be enforced network-wide from the user’s device, through the LAN, and across the WAN.

Threat Defense integration

Aruba Threat Defense with the EdgeConnect SD-WAN edge platform extends advanced intrusion detection The integration of Aruba Threat Defense with the Aruba EdgeConnect SD-WAN edge platform extends advanced intrusion detection and prevention (IDS/IPS) capabilities to EdgeConnect physical and virtual appliances. This allows the EdgeConnect platform to leverage the Aruba threat infrastructure, sharing critical threat information between Aruba Central and EdgeConnect to deliver full visibility across the network.

These advanced unified threat management (UTM) capabilities enable enterprises to deliver east-west lateral security as well as secure local internet breakout from branch locations and can be deployed centrally on premises or in the cloud. By leveraging a common threat infrastructure and threat feeds across Aruba ESP, network and security managers can centrally apply and enforce threat management policies enterprise-wide.

Multivendor partner Ecosystem

As enterprises shift toward a Zero Trust and SASE architecture, they are increasingly evaluating and deploying multivendor cloud-delivered security services. A new Ponemon Institute security best practices survey affirms this, revealing that over 70 percent of respondents would opt for a best-of-breed, cloud-delivered security solution over an all-in-one approach, in order to architect a comprehensive Zero Trust and SASE infrastructure.

With a new Service Orchestration provisioning workflow, the Aruba Orchestrator management console, formerly Silver Peak Unity Orchestrator, now includes pre-configured default information regarding the cloud security partner’s proximity-based cloud security services. Network administrators can quickly and easily associate Aruba branch locations with the partner’s points of presence (POPs) and cloud-data centers. Foremost security vendors such as Check Point, Forcepoint, McAfee, Netskope, Palo Alto Networks, Symantec, and Zscaler are currently a part of Aruba’s extensive technology alliance partner ecosystem.

Powerful combination

The integration of ClearPass Policy Manager and Aruba Threat Defense with the EdgeConnect SD-WAN edge platform allows us to deliver a consistent identity-based policy framework across the Aruba secure edge portfolio,” said David Hughes, Founder of Silver Peak and Senior Vice President of the WAN business at Aruba, a Hewlett Packard Enterprise company. The integration will enable customers to move from center-centric network architectures to cloud-centric WAN

This powerful combination will enable customers to move at their own pace, from legacy data center-centric network architectures, with perimeter-based security, to a cloud-centric WAN with security based on the principles of Zero Trust and SASE. Enterprise customers can deploy our on-premises EdgeConnect WAN edge platform to enforce policy from the edge, and easily integrate with leading cloud-delivered security services from the vendor of their choice, all centrally controlled within Aruba Orchestrator.

Comprehensive WAN Edge portfolio

The Aruba ESP platform offers customers the industry’s most comprehensive portfolio of secure wired, wireless and WAN edge solutions that enable customers to adapt to today’s new normal and tomorrow’s unknowns. The WAN Edge portfolio includes:

  • Virtual Intranet Access Client (VIA) – maximum mobility for work-from-anywhere users whether connecting to private or public networks
  • Remote Access Points (RAPs) – minimal footprint for mobile, remote and temporary workspaces, delivering secure connectivity to the corporate enterprise network
  • SD-Branch – maximum integration and simple unified management across WLAN, LAN, and SD-WAN with Zero Trust security
  • EdgeConnect – optimal QoE (Quality of Experience) from edge-to-cloud with an advanced SD-WAN edge platform and unified SASE components
Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version
  • Related companies
  • Aruba
  • View all news from
  • Aruba

In case you missed it

How Have Security Solutions Failed Our Schools?
How Have Security Solutions Failed Our Schools?

School shootings are a high-profile reminder of the need for the highest levels of security at our schools and education facilities. Increasingly, a remedy to boost the security at schools is to use more technology. However, no technology is a panacea, and ongoing violence and other threats at our schools suggest some level of failure. We asked this week’s Expert Panel Roundtable: How have security solutions failed our schools and what is the solution?

Why Visualization Platforms Are Vital For An Effective Security Operation Center (SOC)
Why Visualization Platforms Are Vital For An Effective Security Operation Center (SOC)

Display solutions play a key role in SOCs in providing the screens needed for individuals and teams to visualize and share the multiple data sources needed in an SOC today. Security Operation Center (SOC) Every SOC has multiple sources and inputs, both physical and virtual, all of which provide numerous data points to operators, in order to provide the highest levels of physical and cyber security, including surveillance camera feeds, access control and alarm systems for physical security, as well as dashboards and web apps for cyber security applications. Today’s advancements in technology and computing power not only have increasingly made security systems much more scalable, by adding hundreds, if not thousands, of more data points to an SOC, but the rate at which the data comes in has significantly increased as well. Accurate monitoring and surveillance This has made monitoring and surveillance much more accurate and effective, but also more challenging for operators, as they can’t realistically monitor the hundreds, even thousands of cameras, dashboards, calls, etc. in a reactive manner. Lacking situational awareness is often one of the primary factors in poor decision making In order for operators in SOC’s to be able to mitigate incidents in a less reactive way and take meaningful action, streamlined actionable data is needed. This is what will ensure operators in SOC truly have situational awareness. Situational awareness is a key foundation of effective decision making. In its simplest form, ‘It is knowing what is going on’. Lacking situational awareness is often one of the primary factors in poor decision making and in accidents attributed to human error. Achieving ‘true’ situational awareness Situational awareness isn’t just what has already happened, but what is likely to happen next and to achieve ‘true’ situational awareness, a combination of actionable data and the ability to deliver that information or data to the right people, at the right time. This is where visualization platforms (known as visual networking platforms) that provide both the situational real estate, as well as support for computer vision and AI, can help SOCs achieve true situational awareness Role of computer vision and AI technologies Proactive situational awareness is when the data coming into the SOC is analyzed in real time and then, brought forward to operators who are decision makers and key stakeholders in near real time for actionable visualization. Computer vision is a field of Artificial Intelligence that trains computers to interpret and understand digital images and videos. It is a way to automate tasks that the human visual system can also carry out, the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images. There are numerous potential value adds that computer vision can provide to operation centers of different kinds. Here are some examples: Face Recognition: Face detection algorithms can be applied to filter and identify an individual. Biometric Systems: AI can be applied to biometric descriptions such as fingerprint, iris, and face matching. Surveillance: Computer vision supports IoT cameras used to monitor activities and movements of just about any kind that might be related to security and safety, whether that's on the job safety or physical security. Smart Cities: AI and computer vision can be used to improve mobility through quantitative, objective and automated management of resource use (car parks, roads, public squares, etc.) based on the analysis of CCTV data. Event Recognition: Improve the visualization and the decision-making process of human operators or existing video surveillance solutions, by integrating real-time video data analysis algorithms to understand the content of the filmed scene and to extract the relevant information from it. Monitoring: Responding to specific tasks in terms of continuous monitoring and surveillance in many different application frameworks: improved management of logistics in storage warehouses, counting of people during event gatherings, monitoring of subway stations, coastal areas, etc. Computer Vision applications When considering a Computer Vision application, it’s important to ensure that the rest of the infrastructure in the Operation Center, for example the solution that drives the displays and video walls, will connect and work well with the computer vision application. The best way to do this of course is to use a software-driven approach to displaying information and data, rather than a traditional AV hardware approach, which may present incompatibilities. Software-defined and open technology solutions Software-defined and open technology solutions provide a wider support for any type of application the SOC may need Software-defined and open technology solutions provide a wider support for any type of application the SOC may need, including computer vision. In the modern world, with everything going digital, all security services and applications have become networked, and as such, they belong to IT. AV applications and services have increasingly become an integral part of an organization’s IT infrastructure. Software-defined approach to AV IT teams responsible for data protection are more in favor of a software-defined approach to AV that allow virtualised, open technologies as opposed to traditional hardware-based solutions. Software’s flexibility allows for more efficient refreshment cycles, expansions and upgrades. The rise of AV-over-IP technologies have enabled IT teams in SOC’s to effectively integrate AV solutions into their existing stack, greatly reducing overhead costs, when it comes to technology investments, staff training, maintenance, and even physical infrastructure. AV-over-IP software platforms Moreover, with AV-over-IP, software-defined AV platforms, IT teams can more easily integrate AI and Computer Vision applications within the SOC, and have better control of the data coming in, while achieving true situational awareness. Situational awareness is all about actionable data delivered to the right people, at the right time, in order to address security incidents and challenges. Situational awareness is all about actionable data delivered to the right people Often, the people who need to know about security risks or breaches are not physically present in the operation centers, so having the data and information locked up within the four walls of the SOC does not provide true situational awareness. hyper-scalable visual platforms Instead there is a need to be able to deliver the video stream, the dashboard of the data and information to any screen anywhere, at any time — including desktops, tablets phones — for the right people to see, whether that is an executive in a different office or working from home, or security guards walking the halls or streets. New technologies are continuing to extend the reach and the benefits of security operation centers. However, interoperability plays a key role in bringing together AI, machine learning and computer vision technologies, in order to ensure data is turned into actionable data, which is delivered to the right people to provide ‘true’ situational awareness. Software-defined, AV-over-IP platforms are the perfect medium to facilitate this for any organizations with physical and cyber security needs.

Securing Mobile Vehicles: The Cloud and Solving Transportation Industry Challenges
Securing Mobile Vehicles: The Cloud and Solving Transportation Industry Challenges

Securing Intelligent Transportation Systems (ITS) in the transportation industry is multi-faceted for a multitude of reasons. Pressures build for transit industry players to modernise their security systems, while also mitigating the vulnerabilities, risks, and growth-restrictions associated with proprietary as well as integrated solutions. There are the usual physical security obstacles when it comes to increasingly integrated solutions and retrofitting updated technologies into legacy systems. Starting with edge devices like cameras and intelligent sensors acquiring video, analytics and beyond, these edge devices are now found in almost all public transportation like buses, trains, subways, airplanes, cruise lines, and so much more. You can even find them in the world’s last manually operated cable car systems in San Francisco. The next layer to consider is the infrastructure and networks that support these edge devices and connect them to centralized monitoring stations or a VMS. Without this layer, all efforts at the edge or stations are in vain as you lose the connection between the two. And the final layer to consider when building a comprehensive transit solution is the software, recording devices, or viewing stations themselves that capture and report the video. The challenge of mobility However, the transportation industry in particular has a very unique challenge that many others do not – mobility. As other industries become more connected and integrated, they don’t usually have to consider going in and out or bouncing between networks as edge devices physically move. Obviously in the nature of transportation, this is key. Have you ever had a bad experience with your cellular, broadband or Wi-Fi at your home or office? You are not alone. The transportation industry in particular has a very unique challenge that many others do not – mobility Can you trust these same environments to record your surveillance video to the Cloud without losing any frames, non-stop 24 hours a day, 7 days a week, 365 days a year? To add to the complexity – how do you not only provide a reliable and secure solution when it’s mobile, traveling at varying speeds, and can be in/out of coverage using various wireless technologies? Waiting to upload video from a transport vehicle when it comes into port, the station, or any centralized location is a reactive approach that simply will not do any longer. Transit operations require a more proactive approach today and the ability to constantly know what is going on at any given time on their mobile vehicles, and escalate that information to headquarters, authorities, or law enforcement if needed; which can only occur with real-time monitoring. This is the ultimate question when it comes to collecting, analyzing, and sharing data from mobile vehicles – how to get the video from public transportation vehicles alike to headquarters in real time! Managing video data In order to answer this question, let’s get back to basics. The management and nature of video data differs greatly from conventional (IT) data. Not only is video conducted of large frames, but there are specific and important relationships among the frames and the timing between them. This relationship can easily get lost in translation if not handled properly. This is why it’s critical to consider the proper way to transmit large frames while under unstable or variable networks. The Internet and its protocols were designed more than two decades ago and purposed for conventional data. Although the Internet itself has not changed, today’s network environments run a lot faster, expand to further ranges, and support a variety of different types of data. Because the internet is more reliable and affordable than in the past some might think it can handle anything. However, it is good for data, but not for video. This combination makes it the perfect time to convert video recording to the Cloud! Video transmission protocol One of the main issues with today’s technology is the degradation of video quality when transmitting video over the Internet. ITS are in dire need for reliable transmission of real-time video recording. To address this need a radical, yet proven, video transmission protocol has recently been introduced to the market. It uses AI technology and to adapt to different environments in order to always deliver high quality, complete video frames. This protocol, when equipped with encryption and authentication, enables video to be transmitted reliably and securely over the Internet in a cloud environment. One of the main issues with today’s technology is the degradation of video quality when transmitting video over the Internet Finally, transportation industry has a video recording Cloud solution that is designed for (massive) video that can handle networks that might be experiencing high error rate. Such a protocol will not only answer the current challenges of the transportation industry, but also make the previously risky Cloud environment safe for even the most reserved environments and entities. With revolutionary transmission protocols, the time is now to consider adopting private Cloud for your transportation operations.