As businesses, schools, hospitals and sporting venues look to safely reopen in a COVID-19 world, thermal imaging systems will play a critical role in helping to detect and distinguish skin temperature variations in people. Thermal surveillance, a mainstay of traditional physical security and outdoor perimeter detection, is now being deployed to quickly scan employees, contractors and visitors as part of a first line of defense to detect COVID-19 symptoms.

In the coming weeks and months, the security industry will look to implement thermal camera solutions for customers, yet many questions remain as to the differences between different system types and how to properly install thermal imaging cameras. In this Q&A, Jason Ouellette, Head of Technology Business Development for Johnson Controls, answers several of these questions.

Q: What are some of the different thermal imaging solutions available in the market to detect an elevated temperature in a person?

For the general market, there are three types of these thermographic screenings. There is the handheld device, which is typically lower cost, very portable, and very easy to use. Typically, this is a point and shoot type of device, but it requires you to be three feet or less from the person that you're screening, which, in today's world, means the user needs to wear protective personal equipment.

For the general market, there are three types of these thermographic screenings

The second type of solution would best be described as a thermal camera and kiosk. The advantage of this system over a handheld device is this can be self-service. An individual would go up to and engage with the kiosk on their own. But many of these kiosk type solutions have some integration capability, so they can provide some type of output, for either turnstiles, or physical access control, but not video management systems (VMS). Some of the downside of this type of system is that it’s less accurate than a thermographic solution because it does not have a blackbody temperature calibration device and the readings are influenced by the surrounding ambient temperature, called thermal drift. So instead of being able to achieve a ±0.3ºC accuracy rating, this system probably provides closer to ±0.5ºC at best. Some of these devices may be classed as a clinical thermometer with a higher degree of one time accuracy, but do not offer the speed and endurance of the thermographic solution for adjunctive use.

And then there are thermal imaging camera systems with a blackbody temperature calibration device. These types of systems include a dual sensor camera, that has a visual sensor and a thermal sensor built right into the camera, along with a separate blackbody device. This provides the highest degree of ongoing accuracy, because of the blackbody and its ability to provide continuous calibration. These systems can provide much more flexibility and can offer integrations with multiple VMS platforms and access control devices.

Q: When installing a thermal imaging camera system what is the most important element to consider?

Camera placement is critical to ensure the system works as expected, however the placement of the blackbody device which verifies the correct calibration is in place is equally as important. If the customer wants to follow FDA medical device recommendations for camera placement, both the height of the camera and the blackbody as well as the distance between these devices should comply with the product installation instructions. This takes into account the device focal range and calibration parameters in addressing the distance from the person undergoing the scan. Also, integrators should minimize camera detection angles to ensure optimal accuracy and install cameras parallel with the face as much as possible, and again in compliance with installation instructions.

Integrators should minimize camera detection angles to ensure optimal accuracy

The blackbody should be placed outside of the area where people could block the device and located more towards the edges of the field-of-view of the camera. You need to keep in mind the minimum resolution for effective thermographic readings which is 320 by 240 pixels as defined by the standards. To achieve this, you would need to follow medical electrical equipment performance standards driven by IEC 80601-2-59:2017 for human temperature scanning and FDA guidelines. Within that measurement, the face needs to fill 240 x 180 pixels of the thermal sensor resolution, which is close to or just over 50 percent of the sensor’s viewing area typically, meaning a single person scanned at a time in compliance with the standards for accuracy. 

Along with height and distance placement considerations, the actual placement in terms of the location of the system is key. For example, an expansive glass entryway may impact accuracy due to sunlight exposure. Installations should be focused on ensuring that they are away from airflow, heating and cooling sources, located approximately 16 feet from entry ways and in as consistent of an ambient temperature as possible between 50°F and 95°F.

Q: Once a thermal imaging camera system is installed, how do you monitor the device?

There are several choices for system monitoring, depending on whether the solution is used as standalone or integrated with other technologies, such as intrusion detection, access control or video systems. For standalone systems, the ability to receive system alerts is typically configured through the camera’s webpage interface, and the cameras include abilities such as the live web page, LED display for alerting, audio alerts and physical relay outputs. When done right, these features will all follow cybersecurity best practices which is important for any network solution today, including changing default passwords and establishing authentication methods.

The ability to receive system alerts is typically configured through the camera’s webpage interface

These types of thermal cameras can also integrate with turnstile systems, VMS platforms and access control systems. This is typically done through the integration of a relay output, activated by a triggered temperature anomaly event on a thermal imaging camera which can then be used for activities such as locking a turnstile, or through access control and video systems to send an email or provide an automated contagion report for contact tracing. These capabilities and integrations extend the monitoring capability above that of the standalone solution.

The camera can be configured to monitor a specific range of low and high alerts. Users can determine the actions that should be taken when that alert exceeds the preset low or high threshold. These actions include things like a bright and easy-to-see LED can provide visual notification through pulsing and flashing lights as an example.

Q: What about system maintenance? Does a thermal imaging camera require regular service in order to operate accurately?

First it’s important to make sure the system is calibrated. This can be done after the unit stabilises for at least 30 minutes to establish the initial reference temperature source known as the blackbody. Calibrations conducted before this warm up and stability time period can throw off accuracy. Also, as part of your system maintenance schedule you will want to perform a calibration check of the blackbody device every 12 months, along with following recommendations of the FDA and IEC. If you install the solution and don’t perform maintenance and the blackbody calibration certificate expires, over time there’s a risk that the device will experience drift and a less accurate reading will result.

There’s a risk that the device will experience drift and a less accurate reading will result

Q: What final pieces of advice do you have for either an integrator who plans to install a thermal imaging camera system or an end user who plans to invest in this solution?

Before you buy a thermal imaging camera check to see if the manufacturer ships the camera with a calibration certificate. Also, become familiar with FDA’s guidance released in April 2020, Enforcement Policy for Telethermographic Systems During the Coronavirus Disease 2019 (COVID-19) Public Health Emergency. This document places thermal/fever products for adjunctive use under the category of a Class I medical devices and subject to its regulatory control. Driven by these regulations and categorisation, users need to understand specifically what is required to meet the required level of accuracy for successful detection.

While thermal imaging camera systems are more complex than traditional surveillance cameras, they can prove to be a valuable resource when set up, configured and maintained properly.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version

Author profile

Jason Ouellette Head of Technology Business Development, Johnson Controls, Inc.

In case you missed it

Motorola Solutions Acquires Pelco For $110 Million
Motorola Solutions Acquires Pelco For $110 Million

Motorola Solutions, Inc. today announced it has completed the acquisition of Pelco, Inc., a global provider of video security solutions based in Fresno, California. Pelco designs, develops and distributes end-to-end video technology, including video security cameras and video management system software. The company’s scalable solutions and commitment to service delivery enables customers of all sizes to mitigate risk, increase operational efficiencies and enhance safety.  “Video continues to play a more powerful role in enabling safer cities and securing businesses around the world,” said Greg Brown, chairman and CEO, Motorola Solutions. “Pelco’s track record of innovation, internationally recognized brand, global channel and customer installed base enable us to further expand our global footprint with enterprise and public safety customers.”

What are the Security Challenges of Protecting the Cannabis Industry?
What are the Security Challenges of Protecting the Cannabis Industry?

The advent of a truly new market for the physical security industry is a rare occurrence. Particularly rare is a new market that is both fast-growing and provides an environment that is not just conducive to application of physical security technologies but that actually demands it. Such is the case with the market for legalized marijuana. We asked this week’s Expert Panel Roundtable: What are the security challenges of protecting the cannabis industry?

Wireless Technology Is Transforming Motion Detection
Wireless Technology Is Transforming Motion Detection

Motion detection is a key feature of security systems in residential and commercial environments. Until recently, systems have relied heavily on closed circuit television (CCTV) and passive infrared (PIR) sensors, which both require significant investment and infrastructure to install and monitor. Developments in wireless technology are increasing home security possibilities. Few years ago, these developments led Cognitive Systems to discover that the wireless signals surrounding oneself can be used to detect motion. Known in the wireless industry as WiFi sensing, this technology brings many benefits that other motion detection solutions have not been able to provide. The working of WiFi sensing At Cognitive Systems, the company has used WiFi sensing technology to develop a motion detection solution called WiFi Motion™, which measures and interprets disruptions in RF signals transmitted between WiFi devices. When movement occurs in a space, ripples in the wireless signals are created. WiFi Motion interprets these ripples and determines if an action, such as sending a notification, is needed. Enabling this functionality in a space is incredibly simple. With a software upgrade to only one’s WiFi access point (or mesh router), motion sensing capabilities are layered into one’s WiFi network. Existing connected WiFi devices then become motion detectors without detracting from their original functions or slowing down the network. Using artificial intelligence (AI), WiFi Motion establishes a benchmark of the motionless environment and learns movement patterns over time, which could be used to predict trends. This allows unusual movement patterns to be detected with greater accuracy while decreasing the potential for costly false alerts. WiFi Motion requires no line-of-sight or installation WiFi sensing and other home monitoring solutions All of these capabilities are made possible by WiFi sensing and together create a motion detection system that provides unparalleled accuracy, coverage, privacy and affordability compared to other solutions on the market. PIR integration is far more complex and imposes electronic and physical design restrictions compared to WiFi sensing. In terms of placement, PIR systems are difficult to install, requiring line-of-sight and a device in every room for localization. WiFi Motion requires no line-of-sight or installation and is also a scalable solution compared to PIR. Much like cameras, PIRs can only cover so much space, but WiFi Motion can cover the entire home and even detect motion in the dark and through walls, without adding additional devices to the home. WiFi Motion detects less distinguishing context than cameras and microphones, but more context than regular PIR sensors for the perfect balance of privacy and highly accurate motion detection. Privacy solution While cameras have been the security solution for years, WiFi Motion offers a more affordable solution that can rival the privacy and coverage capabilities of even the most high-end cameras. With such a wide coverage area, one might think that WiFi sensing infringes on privacy, but actually, the opposite is true. With WiFi Motion, the contextual information collected cannot be used to identify a specific individual, unlike cameras which can clearly identify a person’s face or microphones, which can identify a person’s voice. It is different from other smart home security options that use cameras and microphones because it only senses motion using WiFi signals - it doesn’t “see” or “listen” like a camera or microphone would. This provides opportunities for added security in spaces where privacy might be a concern and installing a camera may not be a comfortable solution, such as bathrooms and bedrooms. The data collected is also anonymized and highly encrypted according to stringent industry privacy standards. Existing connected WiFi devices then become motion detectors Additional WiFi sensing applications Since WiFi sensing technology requires no additional hardware or subscription fees, it is much more affordable than other motion detection solutions. It can be used as a standalone solution, or it can be easily layered into more complex systems. This ease of integration, scalability and relatively low cost brings a lot of potential for various applications. Motion detection can trigger other smart devices in the network to turn lights on or off In eldercare, for example, WiFi sensing can be used to help seniors live comfortably in their homes for as long as possible. With the increasing aging population and high costs associated with care homes, the market for this application is considerable. Caregivers can use an app to monitor movement in their loved one’s home and be alerted about unusual movement patterns that could indicate a concern. For smart homes and other environments that have a network of smart devices, the artificial intelligence (AI) component of the technology allows for improvements to automated features. Motion detection can trigger other smart devices in the network to turn lights on or off or make adjustments to the temperature in a room. Security for the commercial sector For office buildings and other commercial properties, it is easy to see how all of these features could be scaled up to offer a highly accurate and cost-effective motion sensing and smart device automation solution. Cognitive Systems is closely involved with the development of WiFi sensing technology, working with various industry groups to establish standards and help it reach its full potential. WiFi Motion is merely the tip of the iceberg in terms of motion sensing possibilities, but its applications in the world of security are undeniably compelling. It is an exciting time for the wireless industry, as one works with stakeholders in the security space to explore everything this technology can do.