With the pandemic still in full swing and no certainty as to when exactly it will come to an end, the world has been battling anxiety for months now. And with each day, circumstances change quickly and almost make it impossible to predict what will happen next, how events will unfold, and what actions to take in light of a new situation.

But one thing is certain: the world has been shut down and paralyzed for way too long, and the eventual reopening is unavoidable – in fact, it’s well under way.

In this situation, what is possible to control is how the world will continue reopening – and specifically, how to ensure the safest possible reopening that will ensure the return of some degree of normalcy to people’s lives and business operations, while also managing the risk of COVID’s spread in the most efficient way.

Our highly digitised, technologically advanced world

This is when the power of technology comes to rescue the day: what truly sets the global crisis we face today apart from other calamities that humanity has encountered over year is the fact that it has developed in a highly digitised, technologically advanced world where each day brings about innovations with a sole purpose to make daily life and operations easier and more streamlined. And among these, the star of the past decade has been artificial intelligence.

The world has been shut down and paralyzed for way too long, and the eventual reopening is unavoidable – in fact, it’s well under way

While AI has many avenues of introducing efficiency and fast problem-solving, there is one specific application that will further fuel the reopening of the world and successfully keep the spread of the virus abate. This “collaborative security” application includes a synthesis of smart video analytics, facial recognition, object identification/detection, and thermal cameras that can support the reopening of businesses globally when installed within those facilities frequented by customers.

With such a level of sophistication that can ensure uninterrupted monitoring and analysis of large public spaces, these AI technologies can ideally operate best as cloud solutions to ensure a collaborative network with maximum scalability and widespread implementation. As these technologies increase in ubiquity and find their way into daily operations of businesses globally, the cost of the smart solutions will decrease proportionally to the growth of their reach.

There are some highly specific ways to create this collaborative network of interconnected safety tools in the current climate. Here are some applications that have been successful to date and will increase in usability in the foreseeable future, creating “smart cities” working together towards a safer, more secure world.

Maintaining social distancing practices

The most important step everyone around the world has taken to contribute to the effort of slowing the spread of the virus has been social distancing. A six-foot-distance has become a new social norm that has quickly been adopted globally and become a habit to people who are naturally used to being close to others and socialising without giving distance a second thought.

The star of the past decade has been artificial intelligence

So, it is natural that such distancing measures take time to get accustomed to – and it is also natural that individuals may forget about them from time to time.

To help maintain the six-foot distance between people at all times and give them slight nudges to keep the rule top of their minds, AI video technology can be trained to estimate the distance between individuals in public and commercial areas and identify the cases in which people get too close to each other. By notifying local merchants or authorities about such cases, the system can help ensure the safety of everyone in the area at all times while positively reinforcing the public to gradually get more accustomed to maintaining the distance and thus helping stop the spread of the virus.

Detecting the virus through facial recognition

Perhaps the straightforward application of such high-level technology is using video surveillance to identify persons of interest who have tested positive for the virus. Modern AI has the ability to identify facial features and characteristics with a unique level of granularity, making it possible to identify individuals whose records show they have antibodies from those who can be potential carriers of the virus.

After the initial differentiation and identification, the system can then notify the employers and employees of the facility about the results of the conducted analysis and the pursuant results, allowing them to be more vigilant and take action where necessary to ensure a safe experience for everyone.

PPE reinforcement

Wearing a mask or some sort of face coverage in public spaces and especially within facilities (such as stores, for instance) has been - and will continue to be - a requirement for maintaining a safe and healthy environment for people to continue with their day-to-day lives and businesses to resume regular operations. To this extent, the object detection and identification abilities of smart cameras can further reinforce this requirement and ensure that the absence of protective equipment doesn’t go unnoticed. 

Essentially, these cameras can easily identify if an individual has coverage at any given point of time or not, notifying the local authorities about any risks immediately and helping them maintain necessary safety measures without having to interrupt their workflow or worry about missing a visitor without a mask.

Detecting high temperature

One of the key (and the most widespread) symptoms of COVID-19 is a high fever - a certain indicator of whether an individual may have been infected with the virus or not. While identifying fever with a regular human eye is nearly impossible, AI can do so at a fraction of time by quickly scanning body temperatures of any incoming individuals and determine whether it’s above CDC’s recommended temperature of 100.4F in order to determine the risk factor and notify the local authorities to take action.

Modern AI has the ability to identify facial features and characteristics with a unique level of granularity

This technology is a good tactic to objectively assess potential risks that come with elevated temperatures - and sometimes, the people themselves might not realize they might (unconsciously) be carriers of the virus and thus endanger the safety of others in their vicinity. The technology is yet another step towards ensuring a safer reopening of the global economy and a more streamlined way of getting back on track while minimizing the risk of spreading the virus further.

It’s not all about the theory 

We have tested the described approaches in our own R&D campus in Europe. The latest release of the IREX cloud enables remote fever detection and monitoring of social isolation and mask policies with AI. We have integrated thermal cameras to detect people with elevated temperature and CCTV cameras for identification and notifying those who potentially ill. In case of any health threat, the venue manager gets an instant message with a picture and exact location.

These preventive steps helped our employees return to the office months earlier than it's happening in other countries. Moreover, personnel coming back to the office by their own wish as now they feel a virus-free environment in the campus - even safer than in their own homes.

Now we are launching a pilot project for a well-known pharmacy chain in Florida, USA. With the help of a Computer Vision platform, staff will be able to divide customer traffic into those with normal body temperature and those who come in with elevated temperatures, as well as effectively monitor social distance norms. The goal of our potential client is to maximize the safety of customers in the post-pandemic period. Also, IREX is already deployed across hundreds of locations in the UK and will add health monitoring capability soon.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version

Author profile

Gary Fowler CEO and President, IREX

  • Related companies
  • IREX
  • View all news from
  • IREX

In case you missed it

HID Global Pilot Program Demonstrates Social Distancing and Contact Tracing
HID Global Pilot Program Demonstrates Social Distancing and Contact Tracing

If one employee stands less than six feet away from another employee, a fob attached to a lanyard around his or her neck emits an auditory beep – an immediate reminder to observe social distancing. If an employee were to be diagnosed with COVID-19, a cloud-based database provides a record of who at the company the sick employee had contact with. These capabilities of HID Location Services ensure social distancing and provide contact tracing to enable companies to return to work safely. They have been deployed in a pilot program at HID Global’s Corporate Headquarters in Austin, Texas. Social distancing using a BLE beacon To ensure social distancing, a Bluetooth Low Energy (BLE) beacon is emitted from an employee’s fob (or from a badge that has the same functionality). The beacon communicates peer-to-peer with a beacon emitted by another employee’s fob or badge to alert if the location of the two employees is less than six feet apart. To ensure social distancing, a Bluetooth Low Energy (BLE) beacon is emitted from an employee’s fob For contact tracing, the beacons communicate via a nearby “reader” (a BluFi BLE-to-Wi-Fi gateway) to the Bluzone cloud-based software-as-a-service. The building area covered by each reader constitutes a “zone,” and the system records when two beacons are signaling from the same zone, which indicates contact between employees. In effect, the system records – historically and forensically – who was near whom (and for how long) using the zone-based approach. “In the workplace, we provide organizations with visibility into the location of their workforce,” says Mark Robinton, Vice President, IoT Services Business Unit at HID Global. Pilot program spans variety of environments By documenting where a sick individual moved in the building, the system also can guide any need to close off a certain area for deep cleaning. Instead of quarantining a whole building, a company could quarantine a small subset of employees who were likely exposed. Importantly, the system only reports data, while management makes the actual decisions about how to respond. The site of the pilot program is the 250,000-square-foot HID Global facility in Austin, which includes a variety of environments, including manufacturing areas, an executive suite, cubicles, a training area, a cafeteria, and lobbies. This spectrum of use cases enables the pilot program to evaluate how the system works in various scenarios. The building in Austin has two floors, plenty of natural lighting and emphasises sustainability in its design. HID Location Services ensure social distancing and provide contact tracing Pilot starts small and expands For the pilot program, 80 readers were installed in a wide area in the facility, including a variety of environments. Initially 30 badges and 30 fobs, all BLE-enabled, were issued to employees. If a badge identifies another nearby beacon (suggesting a social distancing failure), it emits a blinking LED light, which can be seen by the offending co-worker. The fobs emit an audible beep, which employees have overwhelmingly said they prefer. Observers overseeing the pilot program have documented employee reaction and comments. It emits a blinking LED light, which can be seen by the offending co-worker There were challenges in setting up the pilot program remotely to ensure fewer employees were on site during the pandemic. The equipment was provisioned in Florida and then shipped to the Austin location. Fine-tuning was required to adjust the signal strength of the BLE beacons. The badges were initially more powerful, but the strength was dialed back to be comparable to the fobs and within the six-foot social distancing range. Signal strength is also a variable in diverse environments – the 2.4 Ghz signal tends to reflect easily off metal, so adjustments in signal strength are needed in a factory setting, for example, versus a collection of cubicles.   “This facility is large enough and diverse enough that it provides great test results and quality data to analyze,” says Dean Young, Physical Security Manager at HID Global. “Our employees are eager to be part of the pilot to demonstrate that we use the technologies we provide to our customers, and they want to help us stay in compliance with social distancing and contact tracing.” Ensuring privacy while protecting employees HID Global’s headquarters had approximately 425 employees before the coronavirus pandemic lowered the number drastically to include only essential workers. As more people return to work, additional fobs and badges are being issued to expand the scope of the pilot program. The program is also incorporating contact tracing of suppliers and others who visit the facility. Except when triggered by contact among employees, locations are not recorded. Each employee’s location is always available in real-time (e.g. in case of an emergency), but they are not “tracked.” Through BluFi placement and geofence capabilities, the system closes off private areas where location should not be monitored, such as a rest room. Geofencing also identifies when employees enter and/or exit the area covered by the pilot program. Although each beacon is associated with an employee, the employee’s identity is not part of the data stored in the cloud, so there are no privacy concerns. Data is completely anonymized, and no personally identifiable information (PII) is stored in Bluzone. Other computer systems in a company, such as a human resources (HR) program, can privately and securely store the identities associated with each beacon.   Other applications for HID location services In addition to social distancing and contact tracing applications, HID Location Services offer other use cases ranging from asset tracking and employee safety/security to location analytics. For example, the system can analyze room usage for better building management and operational efficiency. It can also quickly find people in emergency situations. These use cases ensure continued value for a system even after concerns about social distancing and contact tracing have faded. The system can analyze room usage for better building management and operational efficiency Another big selling point is the ability of a company to be better prepared in case of a future pandemic, or a second wave of this one, says Robinton. The HID Location Services social distancing and contact tracing applications will be available at the end of Q3 and will be rolled out through HID Global’s existing integrator channel. Vertical markets likely to embrace the technology include healthcare, where hospitals need to track patients as they come in and to know which other patients or staff they may have been exposed to. The financial sector is another likely market, as is manufacturing, which is looking to avoid the prospect of shutting down an entire plant. It’s better to address the three or four people who were near a sick employee than to shut down the plant. In the hospitality industry, fobs can be used to signal duress by the housekeeping staff.

Debunking The Myths Of EBT Cameras In A COVID-19 World
Debunking The Myths Of EBT Cameras In A COVID-19 World

The new buzz in the thermal imaging world goes by many names. In a short time, a small niche in the world of IR, which was previously sidelined to make way for more lucrative markets such as security and defence, has taken the top spot in the attention, production and sales for many manufacturers and integrators.  It’s no surprise considering the size of this new market. Suddenly, hotels, cinemas, malls, hospitals, critical services, public transportation, office buildings and more have become consumers of thermal imaging cameras. Along with that, the more traditional markets, such as security, defense and industry are suffering from budget cuts, project cancellations, or postponements. Combine two of these elements, and the new elevated body temperature (EBT) camera market is easily 3-4 times the size of the other markets combined. Thermal imaging cameras and common misconceptions Can thermal cameras detect viruses?  The answer is NO. The best the camera can do is tell you if someone has a higher skin temperature than others. There are many reasons for an elevated body temperature which are not all health-related, such as exercise or even sitting in a warm environment without air-conditioning. Are the cameras accurate? The accuracy debate is a significant and controversial discussion with much misinformation running around. When discussing accuracy, there are two considerations: The first consideration is the accuracy of the camera itself versus a blackbody. Blackbodies are devices which can regulate temperature very accurately (although not all are equal) and have a high emissivity level, which means they are almost not affected by surrounding heat or energy. All thermal cameras are calibrated against blackbodies. Still, some manufacturers have been using them in their EBT solutions to give the camera a consistent temperature reference to which it can adjust. The accuracy of the camera in this discussion talks about the camera itself. How sensitive the detector is, internal reflections, lens aperture, noise level and the calibration process itself. Also, if you read the fine print, most manufacturers quote accuracy levels which are valid only in a controlled or laboratory environment. As in, a room with a steady 25°C and a slow shift in temperature (not more than 1°C per hour). Most field conditions don’t allow this – so this low level of accuracy is challenging to replicate in practice.Blackbodies are devices which can regulate temperature very accurately The other focuses on the fact we are not looking for COVID in black bodies. We are looking for it in humans. And, the substance known as human skin acts very differently. To date, there are no medical models which can predict how skin will behave in different scenarios. We don’t know what the external skin temperature of a man weighing X who was exposed for X minutes to direct or indirect sunlight would be. So, while the black body may be spot on – it has no bearing on the temperature reading of humans.  So, while we can improve the first issue, the second one is more complicated. One way to circumvent it is by using population statistical analysis and looking for the gradient between the healthy population (which does have existing medical models) to the people with a higher temperature which are statistical anomalies for such a camera. Thermal cameras and their suitability  Are all thermal cameras suitable for temperature readings? There is a difference between a thermal camera and a thermometric camera. A thermal camera developed for security and defence are used to detect threats and give situational awareness. We don’t care that two trees with different temperatures will have different colors – we care about the person standing between them. We manipulate the image, so the viewer has a better understanding of what he sees. With thermometric measurement (as in – thermal temperature reading) we do the exact opposite. We want accurate temperatures readings for each pixel in our screen. A thermometric camera will go through a rigorous calibration together with the lens, which often takes longer. We need to offset, in the calibration tables, minute pixel-sized blemishes in the detector and lens. Those blemishes would be invisible in a thermal image – but can skew the temperature reading and produce inaccurate results. We regularly see suppliers who are using regular thermal cameras with blackbodies to auto adjust the temperature reading as described above. But, if you take that same blackbody and move it a meter to one side, you may discover the camera suddenly registers a different temperature – as not all pixels have a uniform calibration. Does it matter where we scan in humans? Yes and no. The inner canthus of the eye (the tear duct) is the most relevant external point with the best correlation to internal temperature. People looking at the inner canthus will manage to avoid a lot of the effects of ambient temperature on the skin. The tradeoff is that the inner canthus is a tiny area, and people would need to remove their glasses. Most of the world’s health organisations consider the difference between a healthy and sick individual to be 1.5° C (or 2.7° F). That change is consistent whether you’re looking at the tear duct, the forehead or a mouth. Thus, the solutions that look at the gradient temperature (population-based solutions) are just as effective when measuring the ambient temperature on the skin of the population tested.  Do people need to stop in front of the camera? Not necessarily. It depends on the speed of the camera and the temperature detection algorithm. Some cameras can detect people walking very quickly as they only need a few frames to detect the temperature. Will the camera work outdoors? Most outdoor cameras will suffer from false alarms and misses. Some cameras have very advanced compensation algorithms for this, but they can’t take into account all the dynamic temperature changes, humidity, sporadic energy readings and the “bane of thermal imaging” - turbulence. Therefore, the conditions can strain even the most advanced algorithm.  Why invest in this technology? The WHO states, that while asymptomatic transmission exists, it’s much less contagious then symptomatic transmission. Some doctors claim that a person with a fever sheds the virus five times more aggressively than a person with no fever.  There are clear regulations for businesses to screen individuals for fever In some countries, there are clear regulations for businesses to screen individuals for fever as they come into the establishment. While you can have a person in the entrance with a contactless thermometer, they must stop people for a 5-second check each time they come in. That would cause long lines in many places with high traffic. And, during testing, standing less than 2 meters from the individual would throw social distancing out the window. If the tester got sick, the next day they would start endangering everyone else they checked. It’s better to screen automatically and only use the IR thermometer in cases where an alert was triggered and needed to be verified. Various forms of technology  We’ve also seen much use of the IR tablets recently. While they are low cost, a person usually needs to stand very close (less than 1 meter) from the monitor to be caught by the camera. Thus, spreading his germs on the glass or plastic cover of the tablet while being screened.  In conclusion – Thermal EBT cameras are important. They aren’t a miracle cure, and they won’t stop the spread of the virus. And one should be careful of false promises. But along with other solutions (most importantly – masks), they can help protect us during these times and allow the wounded global economy to rejuvenate itself.

Beyond Video Analytics, What Are the Benefits of AI and Machine Learning?
Beyond Video Analytics, What Are the Benefits of AI and Machine Learning?

Artificial intelligence (AI) and machine learning have made a big splash in the physical security market, transforming video analytics to a new level of accuracy. In fact, the terms have become common buzzwords throughout the industry. However, the potential for AI and machine learning to impact the physical security industry goes far beyond their ability to improve video analytics. We asked this week’s Expert Panel Roundtable: Beyond better video analytics, how can artificial intelligence (AI) and/or machine learning benefit the physical security market?