Indoor positioning is, in many ways, an inside version of the satellite-navigation apps we rely on for outdoor navigation, but with an added twist – it can also be used to help locate people and things.

Let’s say you’re at home and misplaced your car keys, or you’re in a grocery store and can’t find your favorite brand of coffee. Or maybe you’re working in a factory and need a particular tool from a storage bin, or you’re a site manager dealing with an emergency and need to make sure everyone’s exited the building. Indoor positioning helps in all these situations, because it can locate items and guide you to where they are.

The importance of “where”

Knowing where an asset is located in real time is useful in many ways. In industrial settings, it improves item utilization rates and saves time spent searching for things. It opens the door for a new level of “just in time” efficiency on factory floors, and for inventory management in warehouses and retail environments. Safety is another benefit of accurate location, because knowing where people, automatic guided vehicles, and robots are in real time can help prevent accidents and keep people out of harm’s way. Accurate location in real time also enables contextual decision-making, so your smart house adjusts your stereo automatically as you move from to room or lets you control objects by simply pointing at them.

Lets you control objects by simply pointing at them

Security authorisations based on location is another possibility. Precise real-time location is something that can be hard to fake, so it can be used to restrict access to an area or used to add protections based on where an asset sits, where a piece of data resides, or the origination point of a communication.

Getting the technology right

Developing an effective technology for indoor positioning requires several things. To begin with, location readings needs to be very precise, with accuracy down to as small an area as possible. The technology has to be secure, because location often needs to be kept private. The technology has to be reliable, even in harsh environments, and easily scalable, too, so it can address the thousands of people and assets in large venues. It has to be low power and affordable, so it can be embedded in everything from high-end, complex devices like smartphones to low-end, simple devices like asset tags. And, of course, the technology has to have latency low enough that it can track movement in real time.

Various wireless technologies, including Bluetooth and Wi-Fi, are already used for indoor positioning, but they don’t deliver on the full set of requirements, especially in terms of accuracy. A different kind of wireless, called Ultra-Wideband (UWB) checks all the boxes. It has the potential to change the way we do all kinds of everyday tasks.

What is UWB?

UWB is based on the IEEE standard 802.15.4a/z, which has been optimized for micro-location and secure communication. UWB is highly accurate. It can pinpoint people and things to within just a few centimeters, making it 100 times more accurate than the current implementations of Bluetooth Low Energy (BLE) and Wi-Fi.

UWB is reliable because it has high immunity to various types of interference, including multipath, which is when a wave from a transmitter traveling to a receiver by two or more paths causes interference.

UWB also offers very low latency, with update rates of up to 1000 times per second and readings that are as much as 50 times faster than satellite navigation. UWB is also implemented using mainstream technology, so it’s both affordable and optimized for low power. Lastly, UWB leverages distance-bounding techniques defined by the IEEE to provide a level of security that makes it extremely difficult to hack.

Ultra-Wideband (UWB) checks all the boxes

How is all this possible? Physics! UWB out-performs other location technology because, unlike Bluetooth and Wi-Fi, which transmit narrowband signals and use Received Signal Strength Indicator (RSSI) to determine location, UWB transmits wideband signals (500 MHz) and uses Time-of-Flight to determine location.

Already in 40+ verticals

UWB is already bringing value to products and services in more than forty verticals covering the consumer, automotive, industrial, and commercial market segments. For example, it brings operational visibility to manufacturing and logistics, helps businesses protect workers, and reduces safety-management costs. UWB also lets robots and drones self-navigate, and enables secure, hands-free access to cars, front doors, and other secure locations. It even helps with contact tracing and social distancing in the fight against COVID-19.

Now in smartphones

Recent adoption in smartphones means UWB is ready to grow quickly. Developers are using UWB as part of new services, with an eye toward making various everyday activities more convenient and safer. With UWB as part of smartphone apps, purchases will be more secure, accessing your car will be possible without a key fob, and misplaced items won’t stay hidden for long. Retail outlets will use location for targeted marketing, and finding things on store shelves will be easier than ever. Home automation will become seamless, and friends and family will be easy to find even if they’re in a crowd.

The question of interoperability

Having UWB in smartphones is an important first step

Having UWB in smartphones is an important first step toward making UWB an everyday part of life, but interoperability is another key factor, since smartphones have to interact with a wide range of other devices and services.

That’s where the FiRa Consortium comes in. Launched just over a year ago, the FiRa Consortium is a member-driven organization of market leaders from the consumer, mobile, industrial, enterprise, and semiconductor industries. FiRa members work collectively to define the future standards that will make interoperability across UWB products a reality.

With FiRa making it possible for developers to use UWB in all kinds of new ways, the future of indoor location is really only limited by the developer’s imagination.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

FiRa Consortium

Headquartered in Beaverton, OR, the FiRa Consortium is a member-driven organization dedicated to the development and widespread adoption of seamless user experiences using the secured fine ranging and positioning capabilities of Ultra-Wideband (UWB) technologies. 

In case you missed it

Safety In Smart Cities: How Video Surveillance Keeps Security Front And Center
Safety In Smart Cities: How Video Surveillance Keeps Security Front And Center

Urban populations are expanding rapidly around the globe, with an expected growth of 1.56 billion by 2040. As the number of people living and working in cities continues to grow, the ability to keep everyone safe is an increasing challenge. However, technology companies are developing products and solutions with these futuristic cities in mind, as the reality is closer than you may think. Solutions that can help to watch over public places and share data insights with city workers and officials are increasingly enabling smart cities to improve the experience and safety of the people who reside there. Rising scope of 5G, AI, IoT and the Cloud The main foundations that underpin smart cities are 5G, Artificial Intelligence (AI), and the Internet of Things (IoT) and the Cloud. Each is equally important, and together, these technologies enable city officials to gather and analyze more detailed insights than ever before. For public safety in particular, having IoT and cloud systems in place will be one of the biggest factors to improving the quality of life for citizens. Smart cities have come a long way in the last few decades, but to truly make a smart city safe, real-time situational awareness and cross-agency collaboration are key areas which must be developed as a priority. Innovative surveillance cameras with integrated IoT Public places need to be safe, whether that is an open park, shopping center, or the main roads through towns Public places need to be safe, whether that is an open park, shopping center, or the main roads through towns. From dangerous drivers to terrorist attacks, petty crime on the streets to high profile bank robberies, innovative surveillance cameras with integrated IoT and cloud technologies can go some way to helping respond quickly to, and in some cases even prevent, the most serious incidents. Many existing safety systems in cities rely on aging and in some places legacy technology, such as video surveillance cameras. Many of these also use on-premises systems rather than utilising the benefits of the cloud. Smart programming to deliver greater insights These issues, though not creating a major problem today, do make it more challenging for governments and councils to update their security. Changing every camera in a city is a huge undertaking, but in turn, doing so would enable all cameras to be connected to the cloud, and provide more detailed information which can be analyzed by smart programming to deliver greater insights. The physical technologies that are currently present in most urban areas lack the intelligent connectivity, interoperability and integration interfaces that smart cities need. Adopting digital technologies isn’t a luxury, but a necessity. Smart surveillance systems It enables teams to gather data from multiple sources throughout the city in real-time, and be alerted to incidents as soon as they occur. Increased connectivity and collaboration ensures that all teams that need to be aware of a situation are informed instantly. For example, a smart surveillance system can identify when a road accident has occurred. It can not only alert the nearest ambulance to attend the scene, but also the local police force to dispatch officers. An advanced system that can implement road diversions could also close roads around the incident immediately and divert traffic to other routes, keeping everyone moving and avoiding a build-up of vehicles. This is just one example: without digital systems, analyzing patterns of vehicle movements to address congestion issues could be compromised, as would the ability to build real-time crime maps and deploy data analytics which make predictive policing and more effective crowd management possible. Cloud-based technologies Cloud-based technologies provide the interoperability, scalability and automation Cloud-based technologies provide the interoperability, scalability and automation that is needed to overcome the limitations of traditional security systems. Using these, smart cities can develop a fully open systems architecture that delivers interoperation with both local and other remote open systems. The intelligence of cloud systems can not only continue to allow for greater insights as technology develops over time, but it can do so with minimal additional infrastructure investment. Smart surveillance in the real world Mexico City has a population of almost 9 million people, but if you include the whole metropolitan area, this number rises sharply to over 21 million in total, making it one of the largest cities on the planet. Seven years ago, the city first introduced its Safe City initiative, and ever since has been developing newer and smarter ways to keep its citizens safe. In particular, its cloud-based security initiative is making a huge impact. Over the past three years, Mexico City has installed 58,000 new video surveillance cameras throughout the city, in public spaces and on transport, all of which are connected to the City’s C5 (Command, Control, Computers, Communications and Citizen Contact) facility. Smart Cities operations The solution enables officers as well as the general public to upload videos via a mobile app to share information quickly, fixed, body-worn and vehicle cameras can also be integrated to provide exceptional insight into the city’s operations. The cloud-based platform can easily be upgraded to include the latest technology innovations such as license plate reading, behavioral analysis software, video analytics and facial recognition software, which will all continue to bring down crime rates and boost response times to incidents. The right cloud approach Making the shift to cloud-based systems enables smart cities to eliminate dependence on fiber-optic connectivity and take advantage of a variety of Internet and wireless connectivity options that can significantly reduce application and communication infrastructure costs. Smart cities need to be effective in years to come, not just in the present day, or else officials have missed one of the key aspects of a truly smart city. System designers must build technology foundations now that can be easily adapted in the future to support new infrastructure as it becomes available. Open system architecture An open system architecture will also be vital for smart cities to enhance their operations For example, this could include opting for a true cloud application that can support cloud-managed local devices and automate their management. An open system architecture will also be vital for smart cities to enhance their operations and deliver additional value-add services to citizens as greater capabilities become possible in the years to come. The advances today in cloud and IoT technologies are rapid, and city officials and authorities have more options now to develop their smart cities than ever before and crucially, to use these innovations to improve public safety. New safety features Though implementing these cloud-based systems now requires investment, as new safety features are designed, there will be lower costs and challenges associated with introducing these because the basic infrastructure will already exist. Whether that’s gunshot detection or enabling the sharing of video infrastructure and data across multiple agencies in real time, smart video surveillance on cloud-based systems can bring a wealth of the new opportunities.

Which new buzzwords reflect the security industry’s trends?
Which new buzzwords reflect the security industry’s trends?

As an industry, we often speak in buzzwords. In addition to being catchy and easy to remember, these new and trendy industry terms can also reflect the state of the security market’s technology. In short, the latest buzzwords provide a kind of shorthand description of where the industry is - and where it’s going. We asked this week’s Expert Panel Roundtable: What new buzzword(s) rose to prominence in the security industry in 2020? (And how do they reflect industry trends?)

Biometrics Provides Industries With Security, Access Control And Data Protection
Biometrics Provides Industries With Security, Access Control And Data Protection

Several major players vigorously employ biometric recognition technologies around the globe. Governments use biometrics to control immigration, security, and create national databases of biometric profiles. Being one of the most striking examples, the Indian Aadhaar includes face photos, iris, and fingerprints of about 1.2 billion people. Financial institutions, on their part, make use of biometrics to protect transactions by confirming a client's identity, as well as develop and provide services without clients visiting the office. Besides, biometric technology ensures security and optimizes passenger traffic at transport facilities and collects data about customers, and investigates theft and other incidents in retail stores. Widespread use of biometrics Business, which suddenly boosted the development of biometrics, is an active user of biometric technology Business, which suddenly boosted the development of biometrics, is another active user of biometric technology. Industries choose biometric systems, as these systems are impossible to trick in terms of security, access control, and data protection. Being in demand in business, these three tasks are also relevant for the industry. However, the use of biometrics at industrial sites is discussed unfairly seldom. Therefore, it is the face identification that is the most convenient there, as workers often use gloves, or their hands may be contaminated, and the palm pattern is distorted by heavy labor. All these features make it difficult to recognize people by fingerprints or veins and significantly reduce identification reliability. Therefore, industries seek facial recognition solutions. Thus, let us demonstrate the application of face recognition technology at different enterprises, regardless of the area. Facial recognition use in incident management Facial biometric products are known to automate and improve the efficiency of security services by enriching any VMS system. These systems provide an opportunity of instantly informing the operator about recognized or unrecognized people, and their list membership, as well as save all the detected images for further security incident investigation. Furthermore, some sophisticated facial biometric systems even provide an opportunity to build a map of the movements of specific people around a site. Besides, it is relevant not only for conducting investigations but also in countering the spread of the COVID-19 virus. Identifying and tracking COVID-19 positive cases Therefore, if an employee or visitor with a positive COVID-19 test enters a facility, the system will help to track his/her movement and identify his/her specific location. It will also help to take the necessary measures for spot sanitary processing. Thus, the introduction of biometric facial recognition at the industrial enterprise can improve and speed up the incidents’ response and investigations without spending hours watching the video archive. Access control system to secure physical assets The right access control system can help industries secure physical and informational assets The right access control system can help industries secure physical and informational assets, cut personnel costs, and keep employees safe. Facial recognition systems may enrich access control systems of any company by providing more security. As biometric characteristics, by which the system assesses the compliance of a person with the available profiles in the database, cannot be faked or passed. The human factor is also reduced to zero, due to the fact that while identity documents can be changed, the inspector can make a mistake or treat his/her task carelessly, be in collusion with an intruder, the biometric system simply compares a person in front of the camera with the biometric profiles database. Biometric facial identification software For example, RecFaces product Id-Gate, a specialized software product for reliable access control to the site, checks the access rights by using biometric facial identification alone or in conjunction with traditional IDs (electronic passes, access keys, etc.), which means that there is almost a zero probability of passing to the site by someone else's ID. The access control system’s functionality allows one to strictly account the number and time of all the facility’s visitors and also track their movement. When unauthorized access is attempted or a person from the stop list is detected, Id-Gate sends an automatic notification to the access control system and operator. Enhanced data and information security Even despite the division of access to different industrial enterprise areas, the security service needs to provide independent information system security. Employees with the same facility access rights may have different access rights to data. However, in that case, a personal password is not enough, as an employee may forget it, write it down and leave it as a reminder, tell a colleague to do something for him/her during the vacation, or just enter it at another person’s presence. Password-free biometric authentication systems make the procedure user-friendly and secure Password-free biometric authentication Password-free biometric authentication systems make the procedure user-friendly and secure. Such systems usually provide an option of two-step verification when successful password entry is additionally confirmed by biometric recognition. Hence, it is particularly relevant due to the current lockdown in many countries. To sum up, the application of biometric technologies solves several issues of the industry, such as: Optimizes and partially automates the work of the security service, as it provides reliable identification and verification of visitors/employees, reduces the amount of time spent on finding a person on video and making a map of his/her movements, without spending hours on watching video archive in case of investigation. Provides a high level of reliability and protection from unauthorized access to the enterprise and the information system. Provides a two-step verification of the user/visitor (including password and biometric data) and almost eliminates the risk of substitution of user data/ID.