megapixel cameras offer resolutions higher than broadcast HD resolution
No more confusion: high definition and megapixel resolution explained 

The growing popularity of IP-based video systems in the video surveillance market provides the ability to capture high-resolution images through megapixel video. The use of HDTV standards in the consumer video market is becoming more prevalent. The images produced by this new generation of surveillance cameras are often collectively referred to as high-definition (HD) or as megapixel images. Since the terms HD and megapixel both indicate an improved level of imaging performance compared to traditional analog video, they are often mistaken to be the same. In this article Raul Calderon, Senior Vice President of Marketing of Arecont Vision lays bare the differences.

The goal of video surveillance should not be to replicate the broadcast (or consumer) HD resolution. As megapixel cameras offer resolutions higher than broadcast HD resolution, an explanation is in order.

Megapixel Versus High-Definition (HD) camera resolution


HD may be considered a subset of megapixel. HD is defined by specific resolutions at specific frame rates with a specific aspect ratio. Any camera with a resolution of more than a million pixels is by definition a megapixel camera. The lowest resolution in the megapixel range in the security market is around 1.3 megapixels, which provides 1280 x 1024-pixel resolution (or 1.3 million pixels), to resolutions as high as 10 megapixels (3,648 x 2,752 pixels). The range of megapixel surveillance cameras continues to expand to accommodate various application requirements. For example, Arecont Vision has expanded its range of megapixel cameras to include 1.3, 1080p, 2, 3, 5, 8 and 10 megapixel offerings, with 20 megapixel solutions in the offing.

Megapixel cameras offer resolutions higher than broadcast HD resolution

Limitations of HD cameras resolution

HD refers to cameras with a standardized resolution of 720p or 1080p. The numbers 720 and 1080 refer to the horizontal resolution. Therefore, 720p HD camera resolution provides images that are 1280 x 720 pixels (921,600 pixels - not megapixel), and 1080p HD cameras provide 1920 x 1080-pixel resolution, or 2.1 megapixels. The HD video format also uses an aspect ratio of 16:9 (rather than 5:4 or 4:3), and the frame rate is standardized at 60, 50, 30 or 25 fps (depending on your TV).

IP video systems have momentum

According to a report by TechNavio Insights, IP video surveillance is poised for significant growth among end-users and large organizations. The benefits of software-driven functionality and the control, scalability and broad availability of video are often listed as factors contributing to this growth. However, among the biggest performance features of IP surveillance is the ability to provide a broad range of video resolutions. With H.264 compression and programmable resolutions and streaming, the new standard for video resolution can be defined simply as "whatever the application calls for". With IP/megapixel video, surveillance cameras assigned to cover critical areas can now capture any level of resolution up to 10 megapixel images (3,648 x 2,752 pixels - nearly five-times the resolution of a 1080p camera).

Using combinations of surveillance cameras with varying resolutions

With the ability of today's megapixel cameras to be adjusted to specific surveillance locations at different resolutions, cameras of varying resolutions can be combined on the same network. Core areas can then be viewed and recorded with higher resolution quality while secondary areas are viewed at less resolution with slower frame rates. Video analytics can also be applied to trigger megapixel streaming only when automatically activated. This approach conserves valuable bandwidth to optimize existing network pipelines as well as recorder storage space.

 The higher resolution provided by megapixel cameras also allows system designers to use fewer surveillance cameras to cover larger areas
To create an optimum surveillance solution CCTV cameras of different resolutions can be used where appropriate

The higher resolution provided by megapixel cameras also allows system designers to use fewer surveillance cameras to cover larger areas without losing detail, and with reduced infrastructure and cabling costs. In addition to reducing the initial installation costs of a system, these benefits translate directly into greater return-on-investment (ROI) and lower total cost of ownership.

Advantages of IP megapixel video

One of the advantages of IP megapixel video is versatility of resolution performance. Another factor contributing to the rapid rise of IP megapixel imaging is the ease of network system connectivity. Previously, every single surveillance camera had to have a "home run" coaxial cable running to the video recorder, which increased cabling costs exponentially. However, improved networking infrastructure enables connection of multiple cameras with fewer cables, and the use of Power-over-Ethernet (PoE) even allows power to be supplied to cameras on the same CAT-5 cables as video and control signals (rather than needing localized power or a distributed power supply). It's a very efficient and simple installation solution.

Additionally, the superior resolution provided by megapixel cameras enables highly detailed and accurate digital PTZ (pan-tilt-zoom) of live and recorded images. As a result, megapixel cameras virtually eliminate the need for mechanical PTZ cameras, which are often costly and feature mechanical parts prone to failure.

A contributing factor of the rapid rise of IP megapixel imaging is the ease of network connectivity

Deploying IP megapixel systems

Many system integrators (and users) have a false perception that IP megapixel systems are too complicated to deploy. It's true these systems are not plug-and-play in the traditional sense, but partnerships between camera suppliers such as Arecont Vision and various DVR and VMS suppliers have paved the way for simplified integration of systems that meet the definition of plug-and-play on an IP network. Standards initiatives such as PSIA and ONVIF are making plug-and-play with little or no programming a possibility eventually. Additionally, there's a wide range of megapixel cameras available today with selectable resolution and frame rates that are ideal for general surveillance applications. These options provide system designers with a high degree of flexibility and confidence in their designs.

Megapixel cameras are also comparable in price to standard-resolution cameras
 Adopting megapixel cameras has been made easier with the development of H.264 video compression

The move to megapixel camera resolution

The developments related to H.264 video compression make bandwidth and storage requirements of megapixel images in IP-based systems comparable to those of standard resolution images. Megapixel cameras are also comparable in price to standard-resolution cameras. When you consider the ability to use fewer megapixel cameras to cover larger areas than analog cameras, the result is a related savings on infrastructure and labor costs. These are all reasons why IMS Research predicts a significant increase in the installation of networked video surveillance systems, and that more than half the network cameras shipped by 2014 will be high-definition or megapixel resolution.

Whether you prefer megapixel cameras or its subset HD based on your specific needs, the wide range of high resolution cameras today provides a powerful palette of imaging tools for industry professionals. It's crystal clear that better systems are a direct result of the superior imaging possible with these high-resolution camera technologies.

 

Raul Calderon Senior Vice President of Marketing Arecont Vision Raul Calderon
Senior Vice President of Marketing
Arecont Vision
Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version

In case you missed it

COVID-19 Worries Boost Prospects Of Touchless Biometric Systems
COVID-19 Worries Boost Prospects Of Touchless Biometric Systems

Spread of the novel coronavirus has jolted awareness of hygiene as it relates to touching surfaces such as keypads. No longer in favor are contact-based modalities including use of personal identification numbers (PINs) and keypads, and the shift has been sudden and long-term. Both customers and manufacturers were taken by surprise by this aspect of the virus’s impact and are therefore scrambling for solutions. Immediate impact of the change includes suspension of time and attendance systems that are touch-based. Some two-factor authentication systems are being downgraded to RFID-only, abandoning the keypad and/or biometric components that contributed to higher security, but are now unacceptable because they involve touching. Touchless biometric systems in demand The trend has translated into a sharp decline in purchase of touch modality and a sharp increase in the demand for touchless systems, says Alex Zarrabi, President of Touchless Biometrics Systems (TBS). Biometrics solutions are being affected unequally, depending on whether they involve touch sensing, he says. Spread of the novel coronavirus has jolted awareness of hygiene as it relates to touching surfaces such as keypads “Users do not want to touch anything anymore,” says Zarrabi. “From our company’s experience, we see it as a huge catalyst for touchless suppliers. We have projects being accelerated for touchless demand and have closed a number of large contracts very fast. I’m sure it’s true for anyone who is supplying touchless solutions.” Biometric systems are also seeing the addition of thermal sensors to measure body temperature in addition to the other sensors driving the system. Fingerscans and hybrid face systems TBS offers 2D and 3D systems, including both fingerscans and hybrid face/iris systems to provide touchless identification at access control points. Contactless and hygienic, the 2D Eye system is a hybrid system that combines the convenience of facial technology with the higher security of iris recognition. The system recognises the face and then detects the iris from the face image and zeros in to scan the iris. The user experiences the system as any other face recognition system. The facial aspect quickens the process, and the iris scan heightens accuracy. TBS also offers the 2D Eye Thermo system that combines face, iris and temperature measurement using a thermal sensor module. TBS's 2D Eye Thermo system combines face, iris and temperature measurement using a thermal sensor module Another TBS system is a 3D Touchless Fingerscan system that provides accuracy and tolerance, anti-spoofing, and is resilient to water, oil, dust and dirt. The 2D+ Multispectral for fingerprints combines 2D sensing with “multispectral” subsurface identification, which is resilient to contaminants and can read fingerprints that are oily, wet, dry or damaged – or even through a latex glove. In addition, the 3D+ system by TBS provides frictionless, no-contact readings even for people going through the system in a queue. The system fills the market gap for consent-based true on-the-fly systems, says Zarrabi. The system captures properties of the hand and has applications in the COVID environment, he says. The higher accuracy and security ratings are suitable for critical infrastructure applications, and there is no contact; the system is fully hygienic. Integration with access control systems Integration of TBS biometrics with a variety of third-party access control systems is easy. A “middleware” subsystem is connected to the network. Readers are connected to the subsystem and also to the corporate access control system. An interface with the TBS subsystem coordinates with the access control system. For example, a thermal camera used as part of the biometric reader can override the green light of the access control system if a high temperature (suggesting COVID-19 infection, for example) is detected. The enrollment process is convenient and flexible and can occur at an enrollment station or at an administration desk. Remote enrollment can also be accomplished using images from a CCTV camera. All templates are encrypted. Remotely enrolled employees can have access to any location they need within minutes. The 3D+ system by TBS provides frictionless, no-contact readings even for people going through the system in a queue Although there are other touchless technologies available, they cannot effectively replace biometrics, says Zarrabi. For example, a centrally managed system that uses a Bluetooth signal from a smart phone could provide convenience, is “touchless,” and could suffice for some sites. However, the system only confirms the presence and “identity” of a smart phone – not the person who should be carrying it. “There has been a lot of curiosity about touchless, but this change is strong, and there is fear of a possible second wave of COVID-19 or a return in two or three years,” says Zarrabi. “We really are seeing customers seriously shifting to touchless.”

How To Use Threat Intelligence Data To Manage Security In The Age Of COVID-19
How To Use Threat Intelligence Data To Manage Security In The Age Of COVID-19

COVID-19 has already had a huge impact on the global economy. According to Statista, GDP growth globally will drop from around 3% to 2.4% - equivalent to a drop of around $35 trillion worldwide. In sectors like oil and gas, the impact is particularly acute: IHS Markit predicted that the reduction in oil consumption due to COVID-19 has led to a first-half surplus of 1.8 billion barrels of crude oil. The macroeconomic trends around these worldwide sectors point to harsher economic conditions and recession. For companies in the oil and gas sector running complex operations around the world, this will lead directly to tougher trading environments and a lot of necessary belt-tightening when it comes to costs around operations. Indirectly, the potential recession could cause more civil unrest and security threats for them as well. To cope with these potential challenges, companies will have to look at how they can maintain security for their operations and prevent risks as much as possible. Taking a contextual approach to physical security With these two goals in mind, looking at threat intelligence data should be considered. Threat intelligence refers to a set of data that can be used to judge current and future trends around risks, from everyday crime or political changes through to larger events like civil unrest, terrorism or the current pandemic. Based on data around these issues, companies can make better decisions on how they invest and manage their security posture in advance. Behind this overall approach, however, there are a significant number of moving parts that have to be considered. This includes where the data comes from, how it is used, and who is using the data. Companies can make better decisions on how they invest and manage their security posture The first consideration for threat intelligence is where data comes from. Typically, companies with large oilfields or refinery operations will have large investments in physical security to protect these environments, and part of this spend will include intelligence on local market, political and security conditions. Using this forecast data, your security leadership team can ensure that they have the right resources available in advance of any particular problem. This data can come from multiple sources, from social media data and crowdsourced information through to government, police and private company feeds. This mass of information can then be used to inform your planning and decision making around security, and how best to respond. However, one issue for oil and gas companies with distributed operations is how much data they have to manage over time. With so many potential sources of information all feeding back in real time, it’s hard to make sense of what comes in. Similarly, companies with international teams may have different sets and sources of data available to different parts of their organizations - while each team has its own view of what is going on, they may be missing out on contextual data from other sources held by neighbouring teams or by the central security department. Without a complete picture, it is easy to miss out on important information. Making threat intelligence smarter To solve this problem - and to reduce the costs around managing threat intelligence data - centralizing your approach can make it easier to provide that context to all your teams and stakeholders. Rather than letting each team set up and run their own threat intelligence approach, centralizing the data and letting each team use this can reduce costs. More importantly, it can improve the quality of your threat intelligence approach overall. By applying a combination of algorithms and security analysts to evaluate threat intelligence centrally, you can improve the quality of the data that you have coming into the organization in the first place. This approach provides higher quality data for decision making. However, a centralized approach is not enough on its own. Local knowledge and analysis is always useful. Consequently, alongside any centralization approach you have to have better filtering and search capabilities, otherwise you risk teams not being able to get the information that is particularly relevant and timely to them. This approach of bringing together centralized management of data feeds with more powerful tools for local teams to find what they want and get that access in real time represents the best of both worlds. Planning ahead Scenarios vary from a best case return to pre-crisis revenues of $50 to $60 per barrel by 2021 or 2022 According to consultancy firm McKinsey, the oil and gas sector faces an enormous challenge over the next few years. Scenarios vary from a best case return to pre-crisis revenues of $50 to $60 per barrel by 2021 or 2022, through to a worst case scenario where demand never returns and the industry has to undertake managed decline around some assets and look for new market opportunities in others. Whatever scenario plays out in the real world, security for existing assets will be a continued requirement. Planning ahead using threat intelligence data will be essential whatever happens. To help reduce costs and improve data quality, centralizing this approach will help. Without this mix of global oversight and local detail, companies will find their operations hampered and wrong decisions are made. It’s only by applying threat intelligence data in the right context that security teams will be able to keep up with the challenges of the future.

What Are the Security Challenges of the Oil and Gas Market?
What Are the Security Challenges of the Oil and Gas Market?

Protecting the oil and gas market is key to a thriving economy. The list of security challenges for oil and gas requires the best technology solutions our industry has to offer, from physical barriers to video systems to cybersecurity. We asked this week’s Expert Panel Roundtable: What are the security challenges of the oil and gas market?