

# Intelligent deep fibre node

The introduction of our latest generation of 1.2 GHz optical node platforms shows the commitment to deliver innovative products that address the needs of the market. The guidelines for the design have been to create a small node with intelligence that would meet the challenges of cost-efficiency, ergonomics and features, all of which enhance the lifetime costs. Including support for the upcoming DOCSIS 3.1 standard, the ACE8 presents concept that opens up flexibility and brings new levels of experience and differentiation to deep fibre nodes.



## Ideally suited for deep fibre solutions

The deployment costs for the whole optical communication infrastructure are high, but the associated costs can be mitigated with an alternative approach. Existing coaxial networks can be updated using a hybrid solution where fibre cables are taken to the roadside and individual customer connections remain on a coaxial cable.

In such cases, the deep fibre-optic node offers an easy and future-proof way for increasing broadband penetration and reaching out to new users. Using the ACE8 enables access to high transmission capacity at a low cost with the flexibility to install fibre cables on demand. This in turn minimises initial installation costs.

# Bringing intelligence to deep fibre applications

Today's deep fibre networks demand much more capacity and intelligence than ever before, and the applications need to be user friendly and reliable, robust yet compact. The ACE8 intelligent deep fibre node fulfils the requirements. It adds desirable aspects of performance and usability when new data and video services are introduced in HFC networks. Supporting latest network requirements the new ACE8 will carry fibre not only deep into network but also deep into the future.

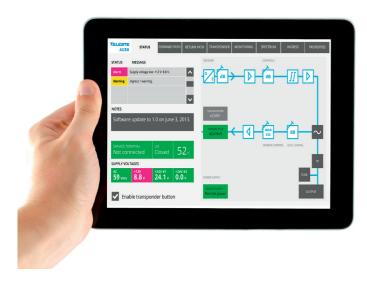
### Compact deep fibre node

The deployment costs for fibre rich infrastructure are high, but the associated costs can be mitigated with an alternative approach. Existing coaxial networks can be updated using a hybrid solution where fibre cables are taken to the roadside and individual customer connections remain on a coaxial cable. The ACE8 is a cost effective node that enables service providers to gain access to high transmission capacity flexibly and at a low cost.

The ACE8 is a compact node with one active output, and designed for deep fibre solutions. It is based on fixed receiver and modular US transmitter. Output amplifier stage uses high performance GaN hybrid, making the usable output level range especially wide. Output can be split into two. The node's US path can be equipped with 1310 nm, 1550 nm or CWDM upstream transmitters. In order to fulfil requirements of future services the downstream frequency band reaches up to 1.2 GHz and upstream can be easily updated to 200 MHz.

### Increased efficiency through remote connectivity

Labour intensive network maintenance is often the prime reason for high operating expenses. Rather than send out technicians on a regular maintenance schedule to ensure each node in the network is operating as expected, the ACE8 can be controlled remotely via the optional plug-in transponder unit.


Together with Teleste's CATVisor EMS network management software the ACE8 replaces conventional mechanical adjustments and the laborious checking of parameters with a reliable system that responds quickly to any indication of a problem. The early warning system allows you to rectify any inefficiency before it becomes a real problem, and reduces unexpected, costly downtime to an absolute minimum. In turn, this leads to several operational benefits, such as improved network reliability and performance. Remote connectivity is also possible via third-party applications through SNMP. If it is necessary to go on site, the ACE8 can be configured locally via its USB interface even wirelessly.

### Benefits of intelligence

The ACE8 equipped with an intelligent transponder which enables a whole new class of functionality. The ACE8 has for example ability to observe quality of upstream signal with an automatic ingress control. Another beneficial feature of ACE8 is its ability to adjust itself automatically. With the ACE8, all configurations are done automatically without the maintenance crew having to adjust and configure each device separately. The automatic features greatly reduce the possibility of human errors, as well as time consuming and inefficient network operations. More importantly, it means cutting down operating costs and increasing customer satisfaction.

### ACE8 and environment

- Advanced GaN hybrid with automatic power optimisation
- Power supply with active power factor correction
- Compact size with reduced material consumption
- High performance means less active units in the field
- Operational savings with a superior remote monitoring system



### Intuitive connectivity

The ACE8 can be controlled via a touch screen interface – either via its USB connection, or Bluetooth®.

Power supply with active power factor correction.

No need for usual plug-in accessories in the system set up.

The transponder module is used to add remoteconnectivity, ALSC and up- and downstream signal monitoring functionality.

A full range of return path transmitters using various laser technologies are available.

External USB management interface

enables local control.



- Wide range of upstream transmitters available
- Automatic or manual ingress control
- Power factor-corrected PSU
- Efficient ESD and Surge protection
- Supports DOCSIS or HMS management

# 

### Technical specifications

| RF CHARACTERISTICS | RF | CHAR | ACTE | RIST | ICS |
|--------------------|----|------|------|------|-----|
|--------------------|----|------|------|------|-----|

| Downstream signal path              |             | Upstream signal path |                   |
|-------------------------------------|-------------|----------------------|-------------------|
| Light wavelength                    | 12901610 nm | Frequency range      | 5200 MHz          |
| Optical input power range           | -70 dBm     | Return loss          | 18 dB             |
| Frequency range                     | 701200 MHz  | Ingress switching    | 0 / -6 / < -45 dB |
| Return loss                         | 18 dB       | Input level          | 57.0 dBμV         |
| Flatness                            | ± 0.5 dB    | OMI adjustment       | 020 dB            |
| Gain limited output level           | 118 dBμV    |                      |                   |
| Slope control range                 | 015 dB      |                      |                   |
| Noise current density               | 6 pA / VHz  |                      |                   |
| CTB 41 channels                     | 116.0 dBμV  |                      |                   |
| CSO 41 channels                     | 117.0 dBμV  |                      |                   |
| U <sub>max</sub> (112 QAM channels) | 113.0 dBμV  |                      |                   |

### OPTICAL CHARACTERISTICS

| AC6740 return path transmitter |                              | AC6745 return path transmitter   AC6476 return path transmitter |                              |
|--------------------------------|------------------------------|-----------------------------------------------------------------|------------------------------|
| Light source                   | 1310 nm FP                   | Light source                                                    | 1310 nm DFB                  |
| Optical output power           | +1 dBm                       | Optical output power                                            | +3 dBm   +6 dBm              |
| Frequency range                | 565 /85 /200 MHz             | Frequency range                                                 | 565 /85 /200 MHz             |
| Pilot frequency                | 4.5 MHz / 6.5 MHz / no pilot | Pilot frequency                                                 | 4.5 MHz / 6.5 MHz / no pilot |
| AC67xx return path transmit    | ters                         |                                                                 |                              |

CWDM units are available with DFB laser of 8 wavelengths. Light source

Optical output power +3 dBm / +6 dBm Frequency range 5...65 / 85 / 200 MHz Pilot frequency 4.5 MHz / 6.5 MHz / no pilot

### AC6991 TRANSPONDER MODULE (CATVisor and HMS) | AC6980 TRANSPONDER MODULE (DOCSIS)

| RF modem                            |                         | RF level measurements |                       |
|-------------------------------------|-------------------------|-----------------------|-----------------------|
| Power consumption                   | 1.8 W   3.8 W           | DS measurement range  | 501000 MHz            |
| DS frequency range                  | 80155 MHz   108862 MHz  | US measurement range  | 585 MHz               |
| US frequency range                  | 545 MHz   565 MHz       | Measurement bandwidth | 0.35 MHz              |
| DS input level range @ transponder  | 5090 dBμV   6898 dBμV   | DS dynamic range      | 80120 dBµV @ node out |
| US output level range @ transponder | 75104 dBμV   67117 dBμV | US dynamic range      | 2075 dBμV @ node in   |

### GENERAL CHARACTERISTICS

| Power consumption       | 22 W                    | Dimensions (h $x w x d$ ) | 200 mm x 230 mm x 90 mm |  |
|-------------------------|-------------------------|---------------------------|-------------------------|--|
| Supply voltage          | 2765 V AC / 205255 V AC | Weight                    | 2.3 kg                  |  |
| Max current feed trough | 6 A / port              | Operating temperature     | -40+55°C                |  |
| Hum modulation          | 70 dB                   | Class of enclosure        | IP54                    |  |
| Optical connectors      | SC/APC, FC/APC, E-2000  | EMC compatibility         | IEC 60728-2             |  |
| Output portss           | PG11                    | ESD                       | 4 kV                    |  |
| Test point connectors   | F female                | Surge                     | 6 kV                    |  |
|                         |                         |                           |                         |  |