UniFinger SFM3520-OP

Datasheet

Ver. 1.1

Revision History

Rev No.	Issued date	Description
1.0	Dec. 3, 2004	Initial Release
1.1	Aug. 23, 2007	Sensor dimensions update

Important Notice

Information in this document is provided in connection with Suprema products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Suprema's Terms and Conditions of Sale for such products, Suprema assumes no liability whatsoever, and Suprema disclaims any express or implied warranty, relating to sale and/or use of Suprema products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Suprema products are not intended for use in medical, life saving, life sustaining applications, or other applications in which the failure of the Suprema product could create a situation where personal injury or death may occur. Should Buyer purchase or use Suprema products for any such unintended or unauthorized application, Buyer shall indemnify and hold Suprema and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Suprema was negligent regarding the design or manufacture of the part.

Suprema reserves the right to make changes to specifications and product descriptions at any time without notice to improve reliability, function, or design.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Suprema reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Contact your local Suprema sales office or your distributor to obtain the latest specifications and

before placing your product order.

Copyright © by Suprema Inc., 2004, 2005, 2006 and 2007

*Third-party brands and names are the property of their respective owners.

Contents

О١	erview	<i>!</i>	4
1.	UniF	Finger SFM3500 Series	5
	Tab	le 1 UniFinger SFM3500 Series combinations	5
2.	Feat	tures	5
3.	Fing	erprint Authentication Specifications	6
	3.1. F	Fingerprint Authentication Performance	6
	3.2. F	Fingerprint Sensor Specifications	6
	3.3. E	Data storage	6
4.	Hard	dware Specifications	6
	4.1.	Operating range	6
	4.2. A	Absolute Maximum Ratings	6
	4.3. E	Electrical DC characteristics $(V_{DD} = 5.0 \text{Vdc}, T_{OP} = 25^{\circ}\text{C}) \dots$	6
	4.4. I	nterface	7
	4.5.	Connector Specifications	7
	4.5.	.1. LED port(J1) pin assignment	8
	4.5.	.2. Digital I/O port (J2) pin assignment	8
	4.5.	.3. Wiegand I/O port (J3) pin assignment	8
	4.5.	.4. Aux interface port (J4) pin assignment	9
	4.5.	.5. Host interface port (J5) pin assignment	9
		.6. Battery connector (J6) pin assignment	
	4.6. F	Physical Dimensions	9
	9	ure 1 Main board dimensions	
		ure 2 Sensor dimensions	
5.		nmunication Protocol Summary	
	5.1. F	Packet Structure	12
	5.2.	Command Summary	12

Overview

The UniFinger modules are stand-alone fingerprint systems ideal for embedded system applications where biometric security is needed. The modules are designed for manufacturers searching for an inexpensive, reliable and easy-to-integrate biometric system. The UniFinger modules provide complete fingerprint solutions by incorporating fingerprint sensor interface and embedded fingerprint recognition algorithm into a half business card sized module.

The UniFinger SFM3500 series is the latest UniFinger module equipped with world's leading fingerprint authentication algorithm (ranked No. 1 in FVC2004) and powerful DSP technology. Also, it supports wide range of fingerprint sensor interoperability giving you a freedom to select suitable sensor that most fits to your application. Furthermore, the fingerprint data for enrollment and verification are compatible among different sensors, even if they are based on different technologies. This feature of unification presents application manufacturers and system integrators with much more flexibility than ever before.

In addition to these features, the miniature sized UniFinger module has a state-of-the-art low power design making it a perfect match in a wide range of applications from battery operated mobile equipments to network based security systems. The UniFinger stands ready to meet your requirements and adapt to your applications.

1. UniFinger SFM3500 Series

The UniFinger SFM3500 series is the latest UniFinger module equipped with world's leading fingerprint authentication algorithm, which ranked No. 1 in FVC2004. The SFM3500 series is based on powerful DSP technology, optimized for performance while minimizing power consumptions.

Table 1 summarizes available combinations of modules and sensors.

Table 1 UniFinger SFM3500 Series combinations

Model name	Supported sensors	Main board
SFM3500-FL	Authentec AF-S2	SFM3500
SFM3510-FC	Atmel Fingerchip	SFM3510
SFM3520-OP	Optical sensor I	SFM3520
SFM3530-OD	Optical sensor II	SFM3530
SFM3550-TC1	UPEK TouchChip TCS1CD	SFM3550
SFM3550-TC2	UPEK TouchChip TCS2CF	

2. Features

- World best authentication performance (ranked No. 1 in FVC2004)
- High speed fingerprint verification
- Compact size
- Low power consumption
- Fast power on time
- Supports various communication interfaces
- Supports fingerprint data encryption
- Supports various fingerprint sensors
- Highly configurable I/O signals
- Operates with a single 5.0v dc supply

3. Fingerprint Authentication Specifications

3.1. Fingerprint Authentication Performance

EER*	<0.1%
Enrollment time	<1 sec
Verification time	<1 sec

^{*}EER is dependent on databases

3.2. Fingerprint Sensor Specifications

Device Name	Optical sensor I
Sensor technology	Optical
Sensing area	16.0mm x 19.0mm
Image size(pixels)	272x320
Image resolution	500 dpi

3.3. Data storage

Template capacity	9,000 at 4M Flash (19,000 at 8M)
LOG capacity	12,800 event
User memory	256 Bytes

4. Hardware Specifications

4.1. Operating range

Parameter	Symbol	Min	Тур	Max	Units
Supply voltage	V_{DD}	4.5	5.0	5.5	٧
Operating temperature	T _{OP}	0		70	°C

4.2. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Power supply voltage	V_{DD}	-0.3	6	V
Input voltage on signal pins	V _{IN}	-0.3	6	V

4.3. Electrical DC characteristics ($V_{DD} = 5.0 \text{Vdc}$, $T_{OP} = 25^{\circ}\text{C}$)

Parameter	Symbol	Min.	Тур.	Max.	Units
Supply current (idle)	I _{DD1}		120		mA
Supply current (scanning)	I _{DD2}		130		mA
Supply current (identifying)	I _{DD3}		150	170	mA
High level input voltage	V _{IH}	2.0		5.5	V
Low level input voltage	V _{IL}	-0.3		0.6	V

4.4. Interface

Туре	Description
Host communication	RS-232C or RS422/485 level
	Baud rates up to 115.2kbps (factory default:
	115.2kbps)
Aux communication	RS-232C or CMOS level
	Baud rates up to 115.2kbps (factory default:
	115.2kbps)
Digital I/O	CMOS(0~5V) level
	3 CMOS input, 3 CMOS output pins
LED driver	3 LED drivers. Common anode. Active low
	outputs.
Wiegand	CMOS(0~5V) level
	Input and output ports supported

4.5. Connector Specifications

Connector	Usage	
J1	LED output port	
J2	Digital I/O port. CMOS(0~5V), 3 Inputs, 2 Outputs	
J3	Wiegand I/O port.	
J4	Aux interface port	
J5	Host interface port	
J6	Battery connector for time keeping	
J7	Internal use only	
J8	Sensor interface port	

^{1.} Connectors J1 \sim J6 are Molex 53261-8090 compatible board-to-wire

connectors.

2. Power can be supplied by one of J2, J3, J4 or J5 connectors.

4.5.1. LED port(J1) pin assignment

Name	pin #	Туре	Functions
GND	1	Power	Power Ground
LED0	2	Output	Active low, Current sink up to 20mA
LED1	3	Output	Current limit resistors integrated (220
LED2	4	Output	Ohm)
VCC	5	Power	Power Supply for LEDs. 5Vdc

4.5.2. Digital I/O port (J2) pin assignment

Name	pin #	Туре	Functions
GND	1	Power	Power Ground
INO	2	Input	CMOS(0~5V), Active high input
IN1	3	Input	Internally pulled down with 47kOhm
IN2	4	Input	resistors
VCC	5	Power	Power Supply. 5Vdc
OUT0	6	Output	
OUT1	7	Output	CMOS(0~5V), Active high output
OUT2	8	Output	
GND	9	Power	Power Ground

4.5.3. Wiegand I/O port (J3) pin assignment

Name	pin #	Туре	Functions	
GND	1	Power	Power Ground	
WINO	2	TTL input	Wiegand input, DATA0	
WIN1	3	TTL input	Wiegand input, DATA1	
NC	4	No connect	Reserved for future use	
VCC	5	Power	Power Supply. 5Vdc	
WOUT0	6	TTL output	Wiegand output, DATA0	
WOUT1	7	TTL output	Wiegand output, DATA1	
NC	8	No connect	Reserved for future use	
GND	9	Power	Power Ground	

4.5.4. Aux interface port (J4) pin assignment

Name	pin #	Туре	Functions
GND	1	Power	Power Ground
TX3	2	RS232C	Aux port transmit data
RX3	3	RS232C	Aux port receive data
VCC	4	Power	Power Supply. 5Vdc
TX4C	5	CMOS	Aux port transmit data
RX4C	6	CMOS	Aux port receive data
GND	7	Power	Power Ground

4.5.5. Host interface port (J5) pin assignment

Name	pin #	Туре	Functions	
GND	1	Power	Power Ground	
TX1	2	RS232C	Host port transmit data	
RX1	3	RS232C	Host port receive data	
TX2P	4	RS422/485	Host port non inverting transmit data	
VCC	5	Power	Power Supply. 5Vdc	
RX2P	6	RS422/485	Host port non inverting receive data	
TX2N	7	RS422/485	Host port inverting transmit data	
RX2N	8	RS422/485	Host port inverting receive data	
GND	9	Power	Power Ground	

4.5.6. Battery connector (J6) pin assignment

Name	pin #	Туре	Functions
GND	1	Power	Power Ground
VBATT	2	Power	RTC power supply. 3~3.6V
GND	3	Power	Power Ground

4.6. Physical Dimensions

Parameter	Values
Main board	63mm x 43mm x 10mm (LxWxH)
Sensor	25mm x 20.5mm x 52mm (LxWxH)

Figure 1 Main board dimensions

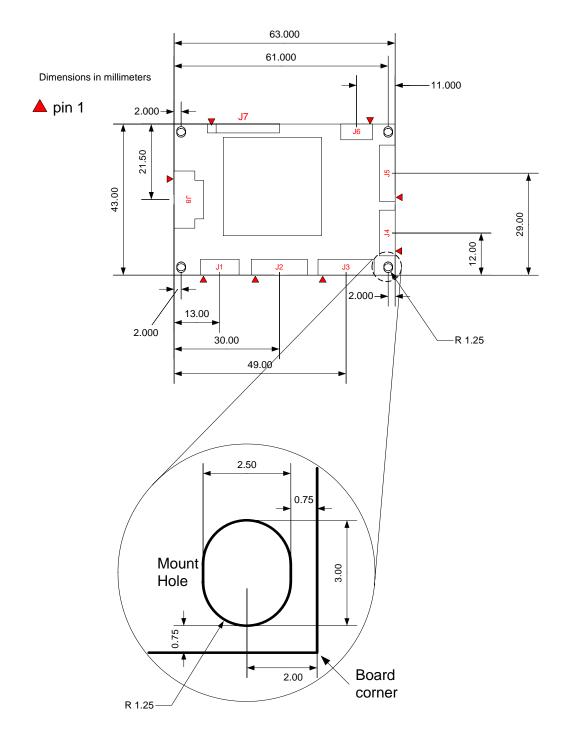
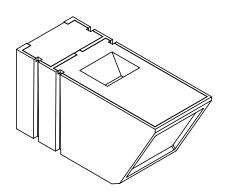
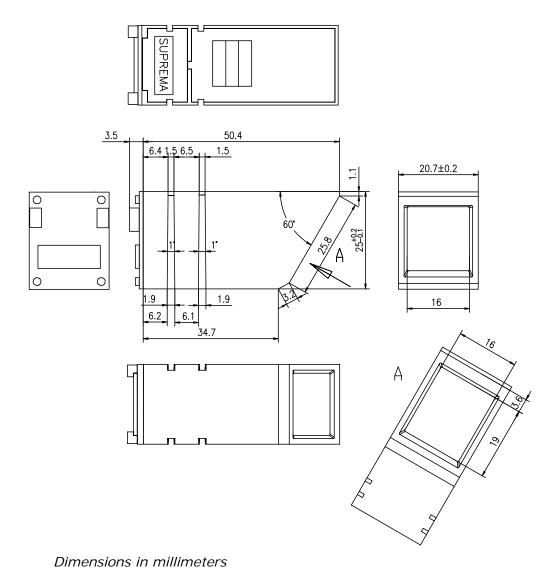




Figure 2 Sensor dimensions

5. Communication Protocol Summary

The UniFinger provides a proprietary communication protocol for easy interface with most host systems. The protocol based on fixed sized packets. Only fingerprint image, template data, and user lists are transmitted as appended to the packet. Checksum functionality is supported to ensure consistency of transmitted data.

Please refer to *UniFinger Protocol Manual* for detailed information.

5.1. Packet Structure

Start code	Command	Param	Size	Flag	Checksum	End code
1byte	1byte	4bytes	4bytes	1byte	1byte	1byte

5.2. Command Summary

Command	Code	Description
SW	0x01	Write system parameter
SF	0x02	Save system parameter
SR	0x03	Read system parameter
CS	0x1A	Calibrate sensor
SS	0x04	Check system status
CA	0x60	Cancel
ES	0x05	Enroll by scan
ESA	0x70	ES with administrator verification
EI	0x06	Enroll by image
EIX	0x80	EI through data transfer protocol
ET	0x07	Enroll by template
EW	0x1C	Enroll by Wiegand ID
EWA	0x71	EW with administrator verification
VS	0x08	Verify by scan
VI	0x09	Verify by image
VIX	0x82	VI through data transfer protocol
VT	0x10	Verify by template
VW	0x1D	Verify by Wiegand ID

VH	0x22	Verify host template by scan	
IS	0x11	Identify by scan	
П	0x12	Identify by image	
IIX	0x81	II through data transfer protocol	
IT	0x13	Identify by template	
DA	0x17	Delete all templates	
DAA	0x74	DA with administrator verification	
DT	0x16	Delete template	
DS	0x1E	Delete by scan	
DSA	0x72	DS with administrator verification	
DW	0x1F	Delete by Wiegand ID	
DWA	0x73	DW with administrator verification	
LT	0x18	List user ID	
СТ	0x19	Check user ID	
FP	0x23	Fix all provisional templates	
DP	0x24	Delete all provisional templates	
RI	0x20	Read image	
RIX	0x84	RI through data transfer protocol	
SI	0x15	Scan image	
SIX	0x83	SI through data transfer protocol	
RT	0x14	Read template	
ST	0x21	Scan template	
KS	0x35	Scan template with challenge data	
KW	0x34	Write encryption key	
ML	0x31	Get size of user memory	
MW	0x32	Write to user memory	
MR	0x33	Read from user memory	
TW	0x3A	Write current time	
TR	0x3B	Read current time	
LN	0x3C	Get number of log data	
LR	0x3D	Read log data	
LD	0x3E	Delete log data	
WW	0x41	Write Wiegand configuration	

0x42	Read Wiegand configuration
0x43	Get Wiegand input
0x44	Set Wiegand output
0x68	Map Wiegand id to input function
0x69	List Wiegand id mapping
0x6A	Clear Wiegand id mapping
0x47	Write input configuration
0x48	Read input configuration
0x49	Get input state
0x4A	Write output configuration
0x4B	Read output configuration
0x4C	Read output configuration list
0x4D	Set output state
0x37	Write GPIO configuration
0x36	Read GPIO configuration
0x38	Clear GPIO configuration
0x39	Set default GPIO configuration
0x65	Write administration level
0x66	Read administration level
0x67	Clear administration level
	0x43 0x44 0x68 0x69 0x6A 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x37 0x36 0x38 0x39 0x65 0x66

Contact Info

Headquarters

Suprema, Inc. (http://www.supremainc.com)

16F Parkview Office Tower, Jeongja, Bundang, Gyeonggi, 463-863 Korea

Tel: +82-31-783-4502 Fax: +82-31-783-4503

Email: sales@supremainc.com, support@supremainc.com